在我国,电镀行业发展较快,随着市场对电镀产品质量要求的提高,电镀工艺对电镀电源的要求也越来越高。开关电源产品由于其具有体积小,重量轻,节能节材,调节精度高,易于控制等诸多优点,正逐渐被广大用户所采用。脉冲开关电源作为开关电源衍生产品,其应用于电镀与直流电镀相比有如下特点:
脉冲电源可通过控制输出电压的波形、频率和占空比及平均电流密度等参数,改变金属离子的电沉积过程,使电沉积过程在很宽的范围内变化,从而在某种镀液中获得具有一定特性的镀层。脉冲镀镍代替直流镀镍可获得结晶细致的镀层,能使镍层的孔隙率与内应力降低,硬度增高,杂质含量降低,并可采用更高的电流密度,提高镀覆速度〖1〗。
根据脉冲镀镍的工艺,我们研制了最大峰值电流1000A,最大峰值电压30V的脉冲镀镍开关电源。其工艺如下:
- 硫酸镍(NiSO4·7H2O):180~240g/L
- 硫酸镁(MgSO4·7H2O):20~30g/L
- 氯化钠(NaCl):10~20g/L
- 硼酸:30~40
- PH值:5.4
- 温度:室温
- 波形:矩形波
- 频率:500~1500Hz
- 占空比:5%~12%
- 平均电流密度(A/dm2):0.7
2电源的基本方案
三相380V/50Hz交流电经过EMI电磁兼容装置,进行桥式整流,再经过逆变和变压,然后再整流、滤波、储能,最后进行电压斩波,输出单向脉冲电压。本电源设计分两部分:前级的开关电源和后级的斩波。脉冲电源电路工作原理框图如图1所示。
图1脉冲电源电路工作原理框图
3开关电源部分的设计要点
3.1开关电源部分原理
主电路由EMI电磁兼容装置、整流电路、逆变电路、高频变压器、高频整流及高频滤波电路组成;控制电路由电流、电压双闭环组成,电流环为内环,电压环为外环;保护电路设置有初级最大电流限制,输出过流、短路保护,最高输出电压限制。
3.2基本要求
脉冲开关电源除应具有一般电源的要求外,还要求短时输出功率大,动态特性好,效率高,并在大功率脉冲输出情况下能稳定可靠地工作。
3.3开关电源的设计
(1)高频化该电源输出最大平均容量为峰值电流1000A,电压30V,占空比10%,即3kW。基于对脉冲开关电源的实际要求,宜采用高频技术方案,同时选取全桥逆变的拓扑形式,提高频率是实现小型化的重要途径,它能减少功率变压器的体积和滤波电感量,而输出电感是影响动态响应的重要因素。高频化还是改善动态响应的重要措施,电源调整的速度随频率提高而加快。从而达到迅速稳压的目的。
(2)容量小型化由于占空比D较小,例如:D=0.1,
则峰值电流将为平均电流的十倍。若按峰值电流设计则不难实现,但电源体积庞大,不经济。若按平均电流设计,则对电源要求十分苛刻,既要求电源小型可靠,又要求电源在负载突变的过程中不能产生过大的压降。对于供电电压为2~30Vd.c.,峰值电流IP=1000A,D=0.05~0.1,需平均电流ICP=50A~100A的开关电源,若按照平均电流来设计,则有以下难题:
①电源在毫秒级时间内突然加上十倍平均电流时将会发生过流保护;
②电源在毫秒级时间内提供不了峰值电流时将会发生输出跳变,即突降过程〖2〗。
本装置采用1.5倍平均电流设计,保证开关电源有足够的裕量,同时,适当增加电源的能量供给能力。
(3)高的电压反馈增益电源应有足够高的电压反馈,提高电源的动态特性,保证脉冲输出电压的平稳。
(4)增大开关电源输出电压保持能力问题
由于电源工作在大脉冲电流条件下,电源至少要经过若干个周期的调整才能稳定过来,并要耐受冲击电流而不至于保护动作,为了减小冲击带来的异常(尖峰,下降等),宜在负载端设置储能电容。
设计方法如下:
电容中储存的能量为:
EC=0.5C0U2
在输出峰值功率P0P作用下,开关电源输出功率为PO1时,维持输出方波宽度TON,输出电压变化ΔU=U1-U2,电容储存的能量如下式所示:
0.5C0(U12-U22)=(P0P-PO1)×TON
由上式求得储能电容C0:
C0={2(P0P-PO1)×TON}/(U12-U22)
同时,储能电容必须选用ESR小,高频性能好的电解电容。
(5)加入逆变桥的过流限制鉴于开关电源输出电容量特别大,开机瞬间和脉冲输出时,逆变桥需要承受特别大的冲击电流,当逆变桥加入单周期过流限制后,能够有效地保证逆变桥的功率器件不会超过设计电流值,而大大提高了开关电源的可靠性。
4电压斩波控制
4.1设计思路
以SG3525PWM芯片为核心进行控制系统的设计。通过用CD4017B芯片进行8分频,对输出最大占空比进行限制。主电路采用场效应管并联。电压斩波控制原理图如图2所示。
图2电压斩波控制原理图
4.2主电路的选择
因为主电路为电压斩波,存在着大电流的冲击,为此,本装置采用场效应管并联。选IR公司的产品FB180SA10比较适合,它的VDSS=100V,RDS(ON)=0.0065Ω,ID=180A(TC=25℃)或120A(TC=120℃),同时,它用绝缘TO227封装,易于并联,内部电感量低。本装置选用12只并联。4.3控制与保护SG3525原理框图如图3所示。其具有5.1V温度系数为1%的基准稳压电源,误差放大器,频率为100Hz~400kHz(其值由外界电阻Rt,电容Ct决定)的锯齿波振荡器,软启动电路,同步电路,关闭电路,脉宽调制比较器,RS寄存器及保护电路。
图3 SG3525原理图.
利用SG3525的误差放大器的1脚和2脚对输出进行占空比的调节;在实际调试过程中发现,由于占空比较小,电压比较器输入电压可以调节的范围特别小,调试非常困难,为此特别设计了分频线路即利用CD4017B十进制计数芯片及其外围线路对SG3525的4脚振荡器输出信号进行8分频,利用SG3525的10脚关机功能,封锁SG3525的4脚输出信号8个中的6个,使11和14脚各有1个脉冲输出,见图4、图5。因为11脚最大占空比为48%左右,则分频后实际输出占空比最大为12%左右,最小占空比通过R7来确定。本部分的保护采取单周期限流保护,以场效应管的栅源电阻为采样信号,当电流超过限定值时,通过SG3525的10脚将该周期驱动信号关断,达到单周期保护。
图4 SG3525的4脚与11脚正常情况下的波形图
图5 CD4017B及外围线路输入与输出的仿真图
4.4仿真与试验
图4给出了SG3525没有分频时,振荡器输出(4脚)CH1与PWM输出(11脚)CH2的对应关系。由图中可以清楚地看出振荡器输出脉冲出现在PWM脉宽的前后侧各一个,其脉宽约在5μs~10μs,这个时间足够CD4017B完成动作。图5给出了CD4017B及外围线路输入输出仿真图。由图5我们可以清楚看出CLK端输入频率1kHz脉宽为5μs的脉冲时,输出OUT即D5~D9的阴极的波形与设计是相符的。经过滤波后,到达SG3525的10脚波形是比较规整的。为分析方便,同时给出了相关引脚的时序图。同时,采取CLK上升沿翻转,保证了控制时序的正确,采用封锁6个脉冲,避免了干扰和初始状态对输出的PWM波形的影响。
5结语
该装置投入运行后,经过将近一年的现场检验,证明运行稳定可靠,各项技术指标达到了设计要求,提高了电镀产品质量,节省了电镀时间,完全满足该项工艺要求。
上一篇:电源模块设计分析与解决方案
下一篇:德州仪器推出 PowerLab™ 参考设计库
推荐阅读最新更新时间:2023-10-18 15:52
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况