在本电源设计小贴士以及下次的小贴士中,我们将研究一种估算热插拔 MOSFET 温升的简单方法。热插拔电路用于将电容输入设备插入通电的电压总线时限制浪涌电流。这样做的目的是防止总线电压下降以及连接设备运行中断。通过使用一个串联组件逐渐延长新连接电容负载的充电时间,热插拔器件可以完成这项工作。结果,该串联组件具有巨大的损耗,并在充电事件发生期间产生温升。大多数热插拔设备的制造厂商都建议您查阅安全工作区域 (SOA) 曲线,以便设备免受过应力损害。图 1 所示 SOA 曲线显示了可接受能量区域和设备功耗,其一般为一个非常保守的估计。MOSFET 的主要忧虑是其结温不应超出最大额定值。该曲线以图形的形式向您表明,由于设备散热电容的存在它可以处理短暂的高功耗。这样可以帮助您开发一个精确的散热模型,以进行更加保守、现实的估算。
图 1 MOSFET SOA 曲线表明了允许能耗的起始点
在《电源设计小贴士 9》中,我们讨论了一种电气等效电路,用于估算系统的散热性能。我们提出在散热与电流、温度与电压以及散热与电阻之间均存在模拟电路。在本设计小贴士中,我们将增加散热与电容之间的模拟电路。如果将热量加到大量的材料之中,其温升可以根据能量 (Q)、质量 (m) 和比热 (c) 计算得到,即:
能量正好是功率随时间变化的积分:
然后合并上述两个方程式,我们得到我们的电容散热模拟 (m*c) 如下:
表 1 列出了一些常见材料及其比热和密度,其或许有助于建模热插拔器件内部的散热电容。
材料 |
比热 (J/(g*oC) |
密度 (g/cm3) |
硅 |
0.7 |
2.3 |
熟铜 |
0.4 |
8 |
铝 |
0.9 |
2.7 |
环氧树脂 |
1 |
1.4 |
表 1 常见材料的物理属性
只需通过估算您建模的各种系统组件的物理尺寸,便可得到散热电容。散热能力等于组件体积、密度和比热的乘积。这样便可以使用图 2 所示的模型结构。
该模型以左上角一个电流源作为开始,其为系统增加热量的模拟。电流流入裸片的热容及其热阻。热量从裸片流入引线框和封装灌封材料。流经引线框的热量再流入封装和散热片之间的接触面。热量从散热片流入热环境中。遍及整个网络的电压代表高于环境的温升。
图 2 将散热电容加到 DC 电气模拟
热阻和热容的粗略估算显示在整个网络中。该模型可以进行环境和 DC 模拟,可帮助根据制造厂商提供的 SOA 曲线图进行一些保守计算。下次,我们将继续讨论热插拔旁路组件,敬请期待。我们将对等效电路中的一些散热时间恒量进行讨论。
关键字:MOSFET 瞬态温升
编辑:冰封 引用地址:估算热插拔MOSFET的瞬态温升—第1部分
推荐阅读最新更新时间:2023-10-18 15:53
saber下MOSFET驱动仿真实例
设计中,根据IXYS公司IXFN50N80Q2芯片手册中提供的ID-VDS,ID-VGS和Cap-VDS等特性曲线及相关参数,利用saber提供的Model Architect菜单下Power MOSFET Tool建立IXFN50N80Q2仿真模型,图5-1所示MOSFET DC Characteristics设置,图5-2所示MOSFET Capacitance Characteristics设置,Body Diode 参数采用默认设置。
首先验证Rg、Vgs、Vds关系,仿真电路如图
这里电路中加入了一定的电感Lg,仿真电路寄生电感,取值是0.05uH,有没有什么依据?我当时是想导
[电源管理]
英飞凌推出OptiMOS 7技术的40V车规MOSFET产品系列
英飞凌 Op ti MOS 7 是英飞凌开发的第五代沟槽技术,是当今领先的双多晶硅沟槽技术。无引脚封装结合铜夹技术的使用,大幅提高了 产品 的 电流 能力。该系列产品将采用业界先进的300mm薄晶圆技术进行批产。 OptiMOS 7 40V 车规 MOSFET 概况 采用OptiMOS 7 技术的40V车规MOSFET产品系列,进一步提升比导通电阻,减小RDSON*A,即在同样的晶圆面积下实现更低的RDSON,或者说在更小的晶圆面积下实现相同的RDSON。如下图所示,英飞凌40V MOSFET不同代际产品在比导通电阻的演进。 英飞凌40V MOSFET比导通电阻代际演进 英飞凌OptiMOS 7 技术是英飞凌
[汽车电子]
比亚迪改良了SiC MOSFET制备方法
前不久比亚迪公司宣布投入巨资布局第三代半导体材料SiC(碳化硅),并整合材料、单晶、外延、芯片、封装等SiC基半导体产业链,致力于降低SiC器件的制造成本,加快其在电动车领域的应用。目前比亚迪公司已成功研发了SiC MOSFET,并期望之后应用于旗下的电动车中,实现SiC基车用功率半导体对硅基IGBT的全面替代,将整车性能在现有基础上提升10%。 在电子领域,MOSFET(场效应晶体管)作为功率开关广泛应用于开关电源、放大器等电子设备中,同时也是硬件设备发热和功率损耗的一大来源。随着新式材料SiC的出现,由于其击穿场强约为Si的10倍,同时具有高热导率、抗辐射等优点,因此可广泛应用于大功率,高温高频半导体器件如MOSFET中。当M
[手机便携]
意法半导体推出5x6mm双面散热微型封装汽车级功率MOSFET管
2017年5月26日,意法半导体推出了采用先进的PowerFLATTM 5x6双面散热(DSC)封装的MOSFET晶体管,新产品可提高汽车系统电控单元(ECU)的功率密度,已被为全球所有的汽车厂商提供先进技术的汽车零配件大厂电装株式会社选用。 STLD200N4F6AG和STLD125N4F6AG是40V功率晶体管,可用于汽车电机控制、电池极性接反保护和高性能功率开关。厚度0.8mm的PowerFLATTM 5x6 DSC封装保留了标准封装的尺寸和高散热效率的底部设计,同时将顶部的源极曝露在外面,以进一步提升散热效率,这样设计让内部芯片有更高的额定输出电流,提高功率密度,让设计人员能够研发更小的电控单元,而无需在功能、性能
[汽车电子]
把握LED设计关键 实现情调照明
一、LED的出现打破了传统光源的设计方法与思路,目前有两种最新的设计理念。 1.情景照明:是2008年由飞利浦提出的情景照明,以环境的需求来设计灯具.情景照明以场所为出发点,旨在营造一种漂亮、绚丽的光照环境,去烘托场景效果,使人感觉到有场景氛围。 2.情调照明:是2009年由凯西欧提出的情调照明,以人的需求来设计灯具。情调照明是以人情感为出发点,从人的角度去创造一种意境般的光照环境。情调照明与情景照明有所不同,情调照明是动态的,可以满足人的精神需求的照明方式,使人感到有情调;而情景照明是静态的,它只能强调场景光照的需求,而不能表达人的情绪,从某种意义上说,情调照明涵盖情景照明。情调照明包含四个方面:一是环保节能,二
[电源管理]
LLC 宣布推出新型高压 (600 V) BLDC MOSFET 门极驱动器 IC
Allegro MicroSystems, LLC 宣布推出一款新型高压 (600 V) BLDC MOSFET 门极驱动器 IC。此款新设备专为混合动力、电动车辆及 48 V 汽车用电池系统的高压电动机控制而设计,如电子动力转向系统、交流压缩机、风扇、泵和鼓风机。此外,A4900 还将为高压工业及商业应用推出非汽车用版本。 Allegro 的 A4900 提供六个门极驱动,可驱动范围广泛的 N 通道 IGBT 或功率 MOSFET 开关。门极驱动分别配置为三个高压高端驱动和三个低端驱动。高端驱动的隔离电压高达 600 V,从而可允许进行使用高桥(电动机)电源电压的操作。高端驱动使用一个自举电容器提供高于 N 通道 FET
[电源管理]
基于TLE6210和L9349设计的ABS驱动电路
ABS作为如今汽车上必备的安全电子设备,其功能越来越受到人们的重视。ABS系统通过电磁阀和回油泵来完成对制动器中轮缸压力的精细调节,以防止过度制动使车轮抱死。由于ABS工作环境十分恶劣,为保证电磁阀和电机响应的高效性和可靠性,除了与执行机构本身的参数相关外,对驱动电路的设计也直接决定了驱动的品质。 当今汽车电子市场异常火热,竞争十分激烈。各大集成芯片公司,如ST,Freescale,Infineon均设计ABS的专用集成芯片,提出了自己的ABS解决方案。该芯片就像一个黑匣子,方便了电路的设计过程,并且由于其高度集成性,使电路更简明,可靠性更高,代表了未来电路设计的方向。 1ABS驱动电路的集成化方案 ABS驱动电路
[电源管理]
MOSFET栅漏电流噪声模型的分析与研究
CMOS器件的等比例缩小发展趋势,导致了栅等效氧化层厚度、栅长度和栅面积都急剧减小。对于常规体MOSFET,当氧化层厚度 2 nm时,大量载流子以不同机制通过栅介质形成显著的栅极漏电流。栅极漏电流不仅能产生于沟道区域,而且能在栅极与源/漏的交叠区域产生。穿越栅氧化层的电流增加了电路的泄漏电流,从而增加了电路的静态功耗,同时也影响MOS器件的导通特性,甚至导致器件特性不正常。栅漏电流增加成为器件尺寸缩减的主要限制因素之一。
栅氧化层越薄,栅漏电流越大,工艺偏差也越大。栅漏电流噪声一方面影响器件性能,另一方面可用于栅介质质量表征,因此由栅介质击穿和隧穿引起的栅电流涨落为人们广泛关注。为了更好地描述和解释栅电流涨落对MOS
[模拟电子]