基于TLE6210和L9349设计的ABS驱动电路

最新更新时间:2011-10-07来源: chinaaet关键字:驱动电路  ABSTLE6210  MOSFET 手机看文章 扫描二维码
随时随地手机看文章

  ABS作为如今汽车上必备的安全电子设备,其功能越来越受到人们的重视。ABS系统通过电磁阀和回油泵来完成对制动器中轮缸压力的精细调节,以防止过度制动使车轮抱死。由于ABS工作环境十分恶劣,为保证电磁阀和电机响应的高效性和可靠性,除了与执行机构本身的参数相关外,对驱动电路的设计也直接决定了驱动的品质。

  当今汽车电子市场异常火热,竞争十分激烈。各大集成芯片公司,如ST,Freescale,Infineon均设计ABS的专用集成芯片,提出了自己的ABS解决方案。该芯片就像一个黑匣子,方便了电路的设计过程,并且由于其高度集成性,使电路更简明,可靠性更高,代表了未来电路设计的方向。

  1ABS驱动电路的集成化方案

  ABS驱动电路的集成化方案如图1所示,选用TLE6210作直流电机和电磁阀总开关的高端驱动,选用L9349作为8个电磁阀(4进4出)的低端驱动。

ABS控制器通过PWM控制,改变电磁阀线圈的电流通断和频率通断,以实现车轮制动的轮缸增压、保压和减压操作;当电磁阀ABS减压阀打开进行减压时,回油泵能使轮缸中的制动液返回制动主缸,以便在下个控制周期中使用;电磁阀的高边总开关用来控制电磁阀的供电电路,若ABS系统发生故障,断开电源使下面挂的8个电磁阀都不动作,恢复常规电磁阀高边总开关的输出引脚为VR,当ABS系统上电复位或看门狗给出控制信号,输出脚即切换到ON状态,这样符合ABS实际工作的逻辑,也保证了当ABS系统发生故障时,可迅速地退出对电磁阀的控制,恢复到常规制动。芯片的MRA脚为控制信号输入端,输出引脚MR驱动直流电机。当MCU的I/O口给MRA脚一高电平时,外接的MOSFET导通,直流电机实现回油功能。由于电磁阀和电机为感性负载,还需要外接反向续流二极管。芯片的驱动部分具有过温保护,过流保护和短路保护,当出现上述故障情况时,能自动关闭芯片,故有很强的自保护特性。



  基于TLE6210芯片的高度集成化方案,不仅能大大简化电机驱动电路和电磁阀前驱电路,还能使整个控制器所需分立芯片数大为减少,PCB板体积也更小,降低了成本,增强了控制器的可靠性

2基于L9349的电磁阀驱动

  经实验测得,一般ABS压力调节器的4个常开进油电磁阀的最大起动电流约为3.6A;4个常闭出油电磁阀最大起动电流约为2.4A。而L9349的工作电压4.5~32V,两路通道内阻O.2Ω,最大负载电流3A;另两路内阻0.3Ω,最大负载电流5A,恰好能满足ABS常开和常闭电磁阀的驱动电流要求,而且较低的导通内阻又能保证低功耗,因此L9349非常适合进行ABS电磁阀的驱动控制。电磁阀驱动电路原理图见图3。



在图3中,每片L9349能驱动4个电磁阀工作,属于典型的低端驱动。通过Vs端口给芯片提供12V供电电压;当给输入端IN1~IN4PWM控制信号,就能方便地控制输出端以驱动4路电磁阀工作,OUT1和OUT2端口的最大驱动能力为5A,应该连接ABS的常闭电磁阀;OUT3和OUT4端口最大驱动能力为3A,应连接ABS常开电磁阀,不可接反;EN端口为使能端,能通过MCU快速关闭芯片;L9349的数字地和模拟地分开,提高了驱动模块的抗干扰

ABS作为如今汽车上必备的安全电子设备,其功能越来越受到人们的重视。ABS系统通过电磁阀和回油泵来完成对制动器中轮缸压力的精细调节,以防止过度制动使车轮抱死。由于ABS工作环境十分恶劣,为保证电磁阀和电机响应的高效性和可靠性,除了与执行机构本身的参数相关外,对驱动电路的设计也直接决定了驱动的品质。

  当今汽车电子市场异常火热,竞争十分激烈。各大集成芯片公司,如ST,Freescale,Infineon均设计ABS的专用集成芯片,提出了自己的ABS解决方案。该芯片就像一个黑匣子,方便了电路的设计过程,并且由于其高度集成性,使电路更简明,可靠性更高,代表了未来电路设计的方向。

  1ABS驱动电路的集成化方案

  ABS驱动电路的集成化方案如图1所示,选用TLE6210作直流电机和电磁阀总开关的高端驱动,选用L9349作为8个电磁阀(4进4出)的低端驱动。

ABS控制器通过PWM控制,改变电磁阀线圈的电流通断和频率通断,以实现车轮制动的轮缸增压、保压和减压操作;当电磁阀ABS减压阀打开进行减压时,回油泵能使轮缸中的制动液返回制动主缸,以便在下个控制周期中使用;电磁阀的高边总开关用来控制电磁阀的供电电路,若ABS系统发生故障,断开电源使下面挂的8个电磁阀都不动作,恢复常规电磁阀高边总开关的输出引脚为VR,当ABS系统上电复位或看门狗给出控制信号,输出脚即切换到ON状态,这样符合ABS实际工作的逻辑,也保证了当ABS系统发生故障时,可迅速地退出对电磁阀的控制,恢复到常规制动。芯片的MRA脚为控制信号输入端,输出引脚MR驱动直流电机。当MCU的I/O口给MRA脚一高电平时,外接的MOSFET导通,直流电机实现回油功能。由于电磁阀和电机为感性负载,还需要外接反向续流二极管。芯片的驱动部分具有过温保护,过流保护和短路保护,当出现上述故障情况时,能自动关闭芯片,故有很强的自保护特性。



  基于TLE6210芯片的高度集成化方案,不仅能大大简化电机驱动电路和电磁阀前驱电路,还能使整个控制器所需分立芯片数大为减少,PCB板体积也更小,降低了成本,增强了控制器的可靠性

2基于L9349的电磁阀驱动

  经实验测得,一般ABS压力调节器的4个常开进油电磁阀的最大起动电流约为3.6A;4个常闭出油电磁阀最大起动电流约为2.4A。而L9349的工作电压4.5~32V,两路通道内阻O.2Ω,最大负载电流3A;另两路内阻0.3Ω,最大负载电流5A,恰好能满足ABS常开和常闭电磁阀的驱动电流要求,而且较低的导通内阻又能保证低功耗,因此L9349非常适合进行ABS电磁阀的驱动控制。电磁阀驱动电路原理图见图3。



在图3中,每片L9349能驱动4个电磁阀工作,属于典型的低端驱动。通过Vs端口给芯片提供12V供电电压;当给输入端IN1~IN4PWM控制信号,就能方便地控制输出端以驱动4路电磁阀工作,OUT1和OUT2端口的最大驱动能力为5A,应该连接ABS的常闭电磁阀;OUT3和OUT4端口最大驱动能力为3A,应连接ABS常开电磁阀,不可接反;EN端口为使能端,能通过MCU快速关闭芯片;L9349的数字地和模拟地分开,提高了驱动模块的抗干扰力

D1~D4是故障诊断引脚,必须外接上拉电阻才能使用,电路正常工作时,该引脚为逻辑高电平,若有故障发生,即会自动置为逻辑低电平。通过对各独立通道的输入控制端和状态反馈端进行逻辑组合,可实时识别出输出端的工作状态,并立即做出相应的措施,包括退出ABS功能,点亮故障显示灯,传输故障码。功能真值表见表1。



  3结语

  当前在ABS设计中普遍采用的电磁阀驱动电路设计均以功率MOSFET为主,辅之以保护回路,隔离措施等以保证其可靠性,还要设计专门的自诊断回路以进行故障检测。虽然在具体电路的设计上分立方案有一定的灵活性,但成本和PCB空间的耗费较高;本方案采用ABS专用集成芯片TLE621O和L9349,集驱动和监测功能于一身,应用于ABS系统中能降低功耗,便于故障检测,提高可靠性,大大改善了整个系统的性能。

关键字:驱动电路  ABSTLE6210  MOSFET 编辑:探路者 引用地址:基于TLE6210和L9349设计的ABS驱动电路

上一篇:下变频器件AD6620的原理及设计配置
下一篇:在线式UPS的控制与保护功能

推荐阅读最新更新时间:2023-10-18 15:51

IR推出两款40V车用COOLiRFET™ 功率MOSFET 产品
2014年10月13日,北京——全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 宣布推出两款40V车用COOLiRFET™ 功率MOSFET 产品——AUIRFN8459和AUIRFN8458,为需要小体积、大电流的汽车应用,比如泵电机控制、车身控制等提供基准导通电阻(Rds(on))。 在采用IR最先进的COOLiRFET™ 40V 沟道技术的车用5x6mm双PQFN功率MOSFET产品系列中,AUIRFN8459和AUIRFN8458是最先推出的两款产品。AUIRFN8459实现了基准性能,即每通道5.9mΩ的超低导通电阻,可承载50A
[汽车电子]
IR推出两款40V车用COOLiRFET™ 功率<font color='red'>MOSFET</font> 产品
恒压驱动电路
恒压驱动电路 恒压驱动电路 这是恒压驱动电路,它利用稳压二极管ZD1(8.6V)来保护恒定的驱动信号幅度。当驱动信号为正脉冲时,Q1导通,通过电阻RG1+RG2对MOSFET激励使之成为软开关。当输入信号为零电平时,Q1截止,Q2导通,MOSFET栅极电荷将经过一个较小的电阻RG1而迅速放电。稳压二极管ZD1的作用是保护MOSFET在截止时不致于被上冲的VDS(500V~600V)通过D?G极间电容耦合到栅极而将管子损坏。
[电源管理]
恒压<font color='red'>驱动电路</font>
大功率晶体管驱动电路的设计及其应用
摘要:介绍了大功率晶体管(GTR)基极驱动电路的设计,分析了基极驱动电路的要求及其设计方法,并给出一种实用的驱动电路。 关键词:大功率晶体管;基极驱动电路;分析;设计   1 引言 作为逆变电路中的核心部件——大功率开关器件,一般分为三大类型,即双极型、单极型和混合型。双极型GTO、GTR、SITH等;单极型有功率MOSFET、SIT等;混合型有IGBT、MGT(MOS门极晶体管)等。这些大功率器件的运行状态及安全性直接决定了变频器和逆变器性能的优劣,而性能良好的驱动电路又是开关器件安全可靠运行的重要保障。本文重点介绍GTR的基极驱动电路。 大功率晶体管(GiantTransistor—GTR
[电源管理]
大功率晶体管<font color='red'>驱动电路</font>的设计及其应用
测量SiC MOSFET栅-源电压时的注意事项
SiCMOSFET具有出色的开关特性,但由于其开关过程中电压和电流变化非常大,因此如Tech Web基础知识 SiC功率元器件“SiC MOSFET:桥式结构中栅极-源极间电压的动作-前言”中介绍的需要准确测量栅极和源极之间产生的浪涌。找元器件现货上唯样商城在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般的MOSFET和IGBT等各种功率元器件,尽情参考。 测量SiC MOSFET栅-源电压:一般测量方法 电源单元等产品中使用的功率开关器件大多都配有用来冷却的散热器,在测量器件引脚间的电压时,通常是无法将电压探头等直接安装到器件引脚上的。因此
[测试测量]
测量SiC <font color='red'>MOSFET</font>栅-源电压时的注意事项
罗姆于世界首次实现SiC-SBD与SiC-MOSFET的一体化封装,并开始量产
日本知名半导体制造商罗姆(总部位于日本京都)面向工业设备和太阳能发电功率调节器等的逆变器、转换器,开发出耐压高达1200V的第2代SiC(Silicon carbide:碳化硅)MOSFET“SCH2080KE”。此产品损耗低,可靠性高,在各种应用中非常有助于设备实现更低功耗和小型化。 本产品于世界首次成功实现SiC-SBD与SiC-MOSFET的一体化封装。内部二极管的正向电压(VF)降低70%以上,实现更低损耗的同时还可减少部件个数。 生产基地在ROHM Apollo Co., Ltd.(日本福冈县),从6月份开始出售样品,从7月份开始陆续量产。 ※根据罗姆的调查(截至2012年6月14日) 现
[半导体设计/制造]
罗姆于世界首次实现SiC-SBD与SiC-<font color='red'>MOSFET</font>的一体化封装,并开始量产
东芝推出高压MOSFET “πMOS VIII”系列
    东京—东芝公司(TOKYO:6502)今天宣布推出新系列高压MOSFET “πMOS VIII”系列,并推出了该系列的首款产品“TK9J90E”,并计划于2013年8月投入量产。     通过优化芯片设计,可将其单位面积导通电阻(Ron•A)较同类产品 降低约24%;而门极电荷(Qg)性能降低约24%,则可将关断时间(toff)改善约28%。 主要规格: 扩展阅读: 东芝推出用于继电器驱动器的新型MOSFET
[电源管理]
东芝推出高压<font color='red'>MOSFET</font> “πMOS VIII”系列
Diodes公司推出微型车用 MOSFET,可提供更高的功率密度
Diodes 公司日前宣布推出额定 40V 的 DMTH4008LFDFWQ 及额定 60V 的 DMTH6016LFDFWQ,两者均为符合车用规范的 MOSFET ,采用 DFN2020 封装。这两款微型 MOSFET 仅占较大封装 (例如 SOT223) 10% 的 PCB 区域,可在直流对直流 (DC-DC) 转换器、LED 背光、ADAS 及其他“引擎盖下”的 汽车 应用之中,提供更高的功率密度。 DMTH4008LFDFWQ 在 VGS = 10V 时的 RDS(ON) 标准值为 11.5mΩ,闸极电荷 Qg 则只有 14.2nC。DMTH6016LFDFWQ 在 VGS = 10V 时的 RDS(ON) 标准值为
[汽车电子]
飞兆推出新款PowerTrench MOSFET产品,有效减少开关损耗
  飞兆半导体公司(Fairchild Semiconductor)推出40V P沟道PowerTrenchMOSFET产品 FDD4141,为功率工程师提供快速开关的解决方案,可将开关损耗减少达一半。FDD4141 具有低导通阻抗 (RDS(ON)),与目前的 MOSFET 比较能降低栅极电荷(QG) 达 50%,可让便携、计算、消费和家庭娱乐产品中的异步降压、电池充电和逆变器开关等应用,以更高的速度进行切换,而不会产生过多的热量。快速开关是步降转换器等开关速度需要达到数百 kHz 应用的必备条件。尽管其它 MOSFET 解决方案亦可在较高频率下进行切换,但这些解决方案的栅极电荷较高,造成发热更多、效率降低。   FDD4
[手机便携]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved