LED电源的几种保护电路

最新更新时间:2011-10-26来源: 互联网关键字:LED电源  保护电路 手机看文章 扫描二维码
随时随地手机看文章

1. 直通保护电路

  半桥和全桥是开关电源常用的拓扑结构,“直通”对其有很大的威胁,直通是同一桥臂两只晶体管在同一时间内同时导通的现象。在换流期,开关电源易受干扰而造成直通,过大的直通电流会损坏用于逆变的电力电子器件。一旦出现直通现象,须尽快检测到并立即关断驱动,以避免开关器件的PN结积累过大的热量而烧坏。这里利用双单稳态集成触发器CD4528设计了一种针对全桥和半桥的直通检测、保护电路。

  CD4528含两个单稳态触发器,其真值表如图1.芯片3脚与13脚分别为其内部两个独立单稳态电路的Clear端,5脚和11脚为单稳态的B输入端,4脚与12脚为单稳态的A输入端。B端接高电平,只有当Clear端为高电平时,A端输入的上升沿触发才会有效。


  

  PWM1与PWM2为PWM芯片输出的两路互补脉冲信号,主电路(见图2)中Q1、Q4的驱动与图3中PWM1同步,Q2、Q3的驱动与PWM2同步。在A、B、C和D4点进行电流上升率采样然后转变为电压信号,并分别给图3中的直通信号1与直通信号2.


  

  主电路中的左右桥臂对称,就左桥臂的直通保护进行分析。正常状态下,当Q1、Q4导通时,PWM1为高电平,PWM2为低电平,3脚高电平输入有效,A点和D点没有电流流过,不会触发单稳态;虽然B点和C点采到了正常输出的上升沿信号,但是13脚低电平时输入无效,所以不会触发单稳态,没有保护信号输出;而在直通时,Q3由于某种原因误导通了,A点将检测到很大的电流上升率并转换为电压信号;此时PWM1为高电平,图3中左边的单稳态被触发产生保护信号送到PWM 芯片的shutdow n 端,封锁PWM 脉冲输出。

  2 过流保护电路

  当出现负载短路、过载或者控制电路失效等意外情况时,会引起流过开关管的电流过大,使管子功耗增大、发热,若没有过流保护装置,大功率开关管就可能损坏; 调节电路失效还可能导致LED过流损坏。 过流保护一般通过取样电阻或霍尔传感器等来检测、比较,从而实现保护,但它们都有体积大和成本高的缺点。

  这里采用如图4的方法,在正激变换器扼流圈放置相同匝数的线径较细的线圈。 这两个绕组是磁平衡的,它们之间本应没有电压差。 但是主绕组有直流电阻,大电流时产生了微小的电压差,该电压差由负载电流决定。这个微小的电压差被运放检测,并且通过调节Rx可以设置电流限制。该电路的缺点是电流限制不是很精细的,这是因为铜电阻在温度每上升10℃时增加4%.但是这个电路依然可以满足我们的设计要求。

  3.开、关机电流过冲保护电路

  稳流型开关电源在开机和关机时容易造成电流过冲,LED之类的负载对ms级的电流过冲都是不允许的,瞬间大电流的冲击有可能损坏LED器件,因此必须严格防止电流过冲。

  3.1开机电流过冲保护

  开机时,由于电源滤波电容大,以及各延迟环节使得电流采样反馈值与给定值在调节器输入端不同,这会使得负载电流上升过冲,实测过冲波形如图5所示。 为了解决这一问题,可以将调节器给定端RC 的值适当加大,调节以后的开机电流没有发生过冲,波形如图6.

 

 

3.2 关机电流过冲保护

 

  在我们设计的30A/20V开关型稳流电源中,采用控制电路单独供电。主电路的滤波电容在工作时存储了大量的电能,切断总电源后,其中存储的电荷持续数秒才能放完。 所以关机后单独供电的采样电路先关而主电路延迟关闭。调节器的给定输入端由主电路供电,即关机后调节器的采样输入端先降低,给定端缓慢降低,于是其输出误差电压增大,控制芯片增加PWM 的占空比,由此导致了关机时负载电流的严重过冲,过冲时的电流波形如图7所示。

 

 

  图8 为关机电流过冲保护电路,该电路能在3ms内迅速检测出交流电源是否关闭,并且在电源关闭后强行将调节器给定输入端的电压拉低,防止电流过冲,具体动作过程如下。

 

  光耦U1、U 2 随被测电源的正负半周交替导通,当A 点交流电压大于光耦中发光二极管的导通电压Von时,光耦开启,C3通过光耦中三极管放电,使B 点的电压达不到场效应管的开启电压; 当交流电压小于Von时,光耦不导通,C3充电,B点的电压增加,此时应使C3的电压上升到场效应管阈值的时间大于光耦关闭的时间,以保证Q2不导通。 在t1时刻交流电源断开,光耦输出呈高阻态,C2中存储的电荷经R1向C3充电,C3上的电压迅速增加,当B点电压大于场效应管的开启电压时,场效应管Q2导通,导通后可迅速将Vs 拉低,图8中Vs是调节器的给定输入端电压。 关机瞬间负载电流和图8中B点的波形如图9.改变R1和R4的参数,可以改变给C3充电的时间。 R4选用较大阻值的,可以提高C3上的电压,同时延长C3的放电时间。 C2的大小可以决定交流电源断电后维持该电路工作的时间。 综上所述,设置合理的参数,便可保证在主电路电源没有完全关闭的情况下,Q2一直导通,即误差放大器的给定输入端一直为零,避免了电流过冲。

  4.过压保护电路


  稳流型电源若负载发生断路,电流检测电阻两端的电压下降到零,一旦给定值不为零,调节器会使得输出电压急剧飙升至最大值,这对负载连接接触不良时是很危险的。 对LED、半导体制冷等负载来说,过压发生时,首要任务是保护负载,其次是保护开关功率管。


  为解决以上问题,有两种保护方法同时使用,一是放置双向TVS来实现对瞬间冲击电压的防护。


  TVS是一种二极管形式的高效能保护器件。当TVS二极管的两极受到反向瞬态高能量冲击时,它能以纳秒级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的元器件免受各种浪涌脉冲损坏。 还可将电阻与TVS串联,当TVS未击穿时,电阻上没有电流,若发生过压,TVS被击穿,电阻上有电流流过,产生压降,以此作为保护信号,送到PWM 芯片的shutdown 端,封锁PWM脉冲输出。 另外一种方法是当负载断路时使电源立即停止工作,如图10所示,图中R24和R27给运放同相输入端提供固定的小电压U+.R26为取样的负载电流输入,当负载发生断路时,运放反相输入端电压U-=0, 因而U+>U-, 运放输出电压为高电平,给出空载保护信号。 同时将时间常数R30×C15与电源给定的时间常数配合调节,使得空载保护不发生误动作。

  结语

  文中主要讨论了LED电源的几种保护方式,并介绍了一些具体电路。 对一个给定的直流开关电源来说,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。 而电源的可靠性将会影响到LED产品的寿命,因此通常需要用几种保护方式加以组合来构成完善的保护系统,确保直流开关电源的正常工作。 我们将这些措施实际用于驱动LED负载,工作安全可靠。

关键字:LED电源  保护电路 编辑:冰封 引用地址:LED电源的几种保护电路

上一篇:如何安装浪涌保护器
下一篇:UC3842电路的保护问题

推荐阅读最新更新时间:2023-10-18 15:58

LED电源测试中电子负载的误区讲解及解决方案
想要提高LED电源的测试效率,最快捷简便的方法就是选择恰当的电子负载。如果对电子负载的知识不够熟悉,或者熟练度不够无法掌握的话,甚至会造成测试结果的置信度下滑,从而影响到产品的质量,严重的还会引发事故。本篇文章主要讲述电子负载CV的原理,并对LED电源测试的一些误区进行介绍。 电子负载的CV模式带载,是LED电源测试的基础。CV,便是恒定电压,但负载只是电流拉载的设备,自身不能提供恒定电压,因此,所谓的CV,仅仅是通过电压负反馈电路,来伺服LED电源输出电流的变化,使LED输出电容上的电荷平衡,进而达到恒定电压的目的。因此,决定CV精度的核心因素有2个: 负载带宽 LED电源输出电容的大小 当LED电源输出电流
[测试测量]
Maxim推出业界首款功能完备的LCD偏置和白色LED电源
2004年9月9日。Maxim Integrated Products (NASDAQ: MXIM)推出业界首款功能完备的LCD偏置和白色LED电源-MAX1578/MAX1579,该器件外部只需一只电感,无需电荷泵二极管。四路稳压输出完全满足便携式设备中小型有源矩阵、薄膜晶体管(TFT) LCD的需求,具有最少的外围元件和较高的转换效率。器件内部集成了三个先进的电荷泵,为LCD偏置电路提供固定值为+5V、+15V和-10V电源,此外,34V升压型DC-DC转换器能够驱动多达8个串联的白色LED。 电荷泵电路仅需外接陶瓷电容,无需外部二极管。所有输出顺序启动和关断,关断期间,输出端断开并快速放电到零。LCD偏置电源的效率为83%
[电源管理]
LED电源恒流电路分析
随着LED照明现在越来越热,作为LED的生命支柱--LED驱动电源也越来越受到人们的关注。 我们都知道LED电源其实没什么特别,其特点就是需要恒流限压,况且长期工作在满载情况下,所以对效率的要求比较高;有些电源由于结构尺寸的限制,对高度有要求。 下面我就试着就目前中小功率的LED照明电源,谈谈次级恒流的一些常见的方法来一个总结;不一定很全面,也不一定很深入,不过总算能对一些初入行的工程师有些帮助。 声明:电路并非所有的都是原创,贴出来是为了方便讨论,如果涉及到侵权问题,请及时告知本人,以便及时删除。 可以毫不夸张的说,LED驱动电源将直接决定LED灯的可靠性与寿命;作为电源工程师,我们知道LED的特性需要恒流
[电源管理]
<font color='red'>LED电源</font>恒流电路分析
过电压输出保护电路
为放大器输出增加晶体继电器和控制电路,提供过电压保护。   在测试测量应用中,必须为放大器输出终端、能量供给和类似元器件提供过电压保护。实现这个任务的传统方法是与钳位二极管一起,在输出节点到电源轨或其他门限电压之间,增加串联电阻(参考文献1和图1)。电阻显著减小了输出电流能力和电压输出随低电阻负载的波动。另一个方法是使用保险丝或其他限流设备,它们比二极管具有更高的能量吸收能力。图2中电路为双极电流源,当源电阻R6上压降增加到大于耗尽型MOSFET   Q1和Q2的门限电压时,通过二极管限流(参考文献2)。这个方法的缺点是过载情况下,串联器件上能量耗散高。   输出终端出现过载电压时,合理的方法是将
[工业控制]
过电压输出<font color='red'>保护电路</font>
LED电源及其基本驱动电路设计
LED 供电的原始电源目前主要有三种:即低压电池、太阳能电池和交流市电电源。无论是采用哪一种原始电源,都必须经过电源变换来满足 LED 的工作条件。这种电源变换电路,一般来说就是指的 LED 驱动电路。在 LED 太阳能供电系统中,还需要蓄电池或超级电容器,用以储存太阳能。在夜晚需要照明时,蓄电池或超级电容器再通过控制电路放电,为 LED驱动电路供电。 太阳能和风能与 LED 的结合,是 LED 应用的一大亮点,它将为第三世界的贫困和边远地区带来光明,让绿色照明的光辉照亮世界的每一个角落。 一、低压直流供电的 LFD驱动电路 1.当输入电压高于 LED电压时 当输入电压高于 LED或 LED串的电压降时,通常采用线性稳压器或开关型
[电源管理]
<font color='red'>LED电源</font>及其基本驱动电路设计
一种基于单片机的节能断电保护电路设计
电能为人类带来了经济效益,且方便环保,但应节约用电,注意安全,防止火灾发生。节能是降低成本,提高经济效益的重大课题,用电注意安全,防止火灾是我们时刻需要注意的问题。根据一些引起火灾的社会现象,设计了一种基于单片机的节能断电保护电路。 1 硬件结构设计 硬件电路如图1所示。S1为手动电源开关;S2按下闭合,放手断开;按下S2,单片机启动运行,经过2 s左右,KM闭合,交流220 V可为电器设备持续供电,供电5 min后,单片机根据传感器检测到的信息控制电源的供电;当某一路传感器检测到信息使P1.1为高电平时,P1.0输出5 V高电平至U4的3脚,而U4的2脚只有1.5 V,这样U4的1脚输出高电平使VT1导通,VT2导通
[单片机]
一种基于单片机的节能断电<font color='red'>保护电路</font>设计
解决方案:为LED驱动电路提供额外的PWM亮度控制
  引言   典型应用中,通过串口向 LED驱动 器发送指令改变相应 LED 的寄存器值进行 亮度 调节。用于亮度控制的数据通常为4位至8位,对应于16至256个亮度等级;有些Maxim的LED驱动器的亮度控制则通过调整漏极开路LED端口的恒定吸入电流大小来实现。   该应用笔记讨论如何在LED恒流 驱动 器上加入 PWM 亮度调节,通过控制 LED电源 的通、断调节亮度。也可以通过刷新数据位仿真外部PWM亮度控制。内置PWM的LED驱动器也可以通过外部PWM实现亮度调节,只要PWM信号的外部 时钟 可以同步。   PWM仿真   按照一定周期向LED驱动器发送开/关控制信号,可以仿真PWM亮度调节
[电源管理]
解决方案:为LED驱动电路提供额外的PWM亮度控制
电池充电及保护电路
     1.  Li+电池保护电路     锂离子(Li+)电池虽然具有能量密度高、使用寿命长、无记忆效应、自放电量较低及单节电池电压高等诸多优点,但在使用时需严格注意过压保护、 过放电保护和过流保护,而且对保护电路的精度要求也较高, 图1 所示电路是利用MAX1666构成的一个完整的Li+ 电池保护器。MAX1666S/V/X可分别为2节/3节/4节Li+电池组提供保护,其中包括:过充电保护、过放电保护、电池失配保护以及过流保护。 过压检测功能还可有效避免电池组中的任何一节电池出现过充电,当电池电压超出设置门限时, , 输出高电平,场效应管Q2、Q3 被断开而终止充电过程
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved