采用PWM高频逆变器的补偿式交流稳压电源的原理电路如图1所示。其中补偿电压uco由单相全桥逆变器产生(也可以采用半桥式或推挽式逆变器),逆变器采用高频SPWM调制。单相全桥逆变器的输出电压uab通过输出变压器Tr,把电压uab变成补偿电压uco在Tr的次级输出。Tr的次级串联在主电路中以对市电电压的变化进行补偿,保持输出电压uo稳定不变。图中LFCF为低通滤波器,以滤掉逆变器输出电压uab中的高次谐波。变压器Tr次级绕组的电阻和漏感以及市电电源内阻共同组成线路阻抗Z,则当负载变化时在Z上产生的压降会使输出电压随之变化。ur为用正弦电压发生器和锁相环产生的标准参考电压,锁相环是使ur在相位上与市电电压us同步。用瞬时值usZisur作为SPWM全桥逆变器控制电路中的调制电压,控制电路的原理框图如图2所示。按此图的高频SPWM调制原理,当用(usZisur)作为正弦调制波时,就可以使逆变器的输出电压与市电电压的变化和负载电压的变化成比例。
图1采用逆变器补偿的交流稳压电路
图2控制电路原理框图
21逆变器输出电压的谐波分析
假定逆变器的直流电源电压为Ud,载波三角波的电压幅值为Uc,则调制比M的值为:M=(1)
式中:Us、Is、Ur为市电电压us,市电电流is和基准参考电压ur的有效值。载波比:N=,fc为三角波频率,fs为市电电压频率。
SPWM波形如图3所示。由此图可知,逆变器输出电压uab的双重付里叶级数表示为:
uab=ua-ub=MUdsinωt+·
cosmπ·sin〔(mN+n)ωt〕(2)
因为变压器Tr的变比为ξ,故补偿电压uco的表示式为:
uco=ξMUdsinωt+ξ·
cosmπ·sin〔(mN+n)ωt〕(3)
uco的频谱如图4所示,可知:载波比N越大,谐波频率越高,滤波越容易,所需的LFCF的值越小,当fc=12.8kHz时,LF=10mH,CF=2μF,即可将uco中的高次谐波滤掉。
22考虑线路阻抗Z的补偿分析
由于逆变器开关管的正向压降,开关死区、变压器Tr初级绕组的电阻及漏感和交流滤波电感LF的绕组电阻及电感的影响,会使补偿电压uco的值减小。但这种影响不大,而且是基本固定的,与负载的大小变化关系不大,因此可以通过增大变压器Tr的变比ξ来补偿。
关键字:高频逆变器 补偿式 交流稳压电源
编辑:冰封 引用地址:采用PWM高频逆变器的补偿式交流稳压电源电路设计
推荐阅读最新更新时间:2023-10-18 16:00
古瑞瓦特高频隔离光伏逆变器领跑全球
在光伏发电系统中,我们常常会遇到这些问题:一到下雨天,并网漏电流开关就跳闸,天气转晴时又自动正常,怎么查都找不到问题点。其实这个事情和组件逆变器等设备没有关系,主要原因是非隔离型光伏系统引起的。 太阳能发电系统中,光伏组件与地之间存在一个对地寄生电容,在潮湿环境或者雨天时,该寄生电容会变大。寄生电容与光伏发电输出电网系统形成共模回路,对地寄生电容能够与并网逆变器中的滤波元件和电网阻抗形成谐振通路,当共模电流的频率到达谐振回路的谐振频率点时,电路中会出现大的漏电流,该共模电流在增加了系统损耗的同时,还会影响逆变器的正常工作,并向电网注入大量谐波,带来安全问题;当系统检测漏电流过大时,逆变器就会停止工作。 非隔离型光伏并网逆变器对地
[新能源]
接触式图像传感器的信号读取与补偿技术
图像传感器是利用光电转换原理将图像数据转换为一系列电子信号的一种装置。接触式图像传感器CIS是80年代末出现的一种新型图像传感器,是以CMOS技术为主的一种光电扫描器件。CIS相比于CCD具有体积小、速度快、成本低、安装调试简单等优点。但无论是CIS还是CCD都要考虑干扰信号、传感器偏差等因素对图像信号的影响,只有排除了这些影响,才能真实地再现图像信息。
明输出与暗输出
明输出VP是指当CIS读取白样张时,光电传感器输出的电信号值。
明偏差UP是指像素阵列中,所有像素点的明输出的偏差值。
UP=(Vpmax-Vpmin)/Vp
暗输出Vd是指当CIS读取黑样张时,光电传
[模拟电子]
双极性移相控制高频脉冲交流环节逆变器研究
0 引言
传统的逆变技术虽然成熟可靠、应用广泛,但存在体积大且笨重、音频噪音大、系统动态特性差等缺点 。用高频变压器替代传统逆变器中的工频变压器,克服了传统逆变器的缺点,显著提高了逆变器的特性。高频脉冲交流环节逆变器 具有双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率和可靠性高等特点,但存在周波变换器器件换流时的电压过冲现象等缺点,通常需要采用缓冲电路或有源电压箝位电路来吸收存储在漏感中的能量,从而降低了变换效率或增添了电路的复杂性。
因此,在不增加电路拓扑复杂性的前提下,如何解决高频脉冲交流环节逆变器固有的电压过冲现象和实现周波变换器的软换流,是这类逆变器的研究重点。
1 高频脉冲交
[电源管理]
通信基站专用的无触点自动补偿式电力稳压器
摘要:高质量的电源是通信基站正常运行的关键。介绍了能满足通信基站用电质量需求的稳压电源,及该电源的原理、性能及特点等。
关键词:电力稳压技术;无触点补偿式自动电力稳压技术;SBW5A/DBW5A?TJ通信基站专用稳压器
1 前言
一般来说,通信基站对稳压电源的要求如下:
1)高可靠性及高安全性;
2)具有较宽的稳压范围与负载调整率及较快的动态响应;
3)稳压器必须采用分相补偿调节,能适应偏远地区小水电发电出现的电压与频率等问题,在输入低电压时也能保证满负载运行;
4)具有防雷电、防浪涌和其它防患措施;
5)免维护并实现无人值守,具有遥控接口等。近年来
[电源管理]
双极性移相控制高频脉冲交流环节逆变器研究
摘要:提出并深入研究了高频脉冲交流环节逆变器电路拓扑族及其双极性移相控制策略。借助周波变换器换流重叠和输出滤波电感电流极性选择,该双极性移相控制策略实现了变压器漏感能量和滤波电感电流的自然换流,解决了这类逆变器固有的电压过冲和换流重叠期间周波变换器的环流现象,实现了逆变桥功率器件的零电压开关和周波变换器功率器件的零电流开关。仿真与原理试验结果均证实了这种双极性移相控制策略的可行性和理论分析的正确性。
关键词:高频脉冲交流环节;双极性移相控制;零电压零电流开关;周波变换器;换流重叠
引言
传统的逆变技术虽然成熟可靠、应用广泛,但存在体积大且笨重、音频噪音大、系统动态特性差等缺点 。用高频变压器替代传统逆变器中的工频变压器,克
[应用]
双向电压源高频链逆变器
双向电压源高频链逆变器
双向电压源高频链逆变拓扑族如图4所示,从输入侧逆变级看,推挽式电路适用于低压输入变换场合;半桥和全桥电路适用于高压输入场合。从输出侧周波变换级看,全波式电路功率开关电压应力高,功率开关数少,变压器绕组利用率低,适用于低压输出变换场合;全桥式电路功率开关电压应力低,功率开关数多,变压器绕组的利用率高,适用于高压输出场合。
双向电压源高频链逆变器具有双向功率流,减少了功率变换级数的优点,但却存在一个固有的缺点,即采用传统PWM技术的输出周波变换器换流时阻断了高频变压器漏感中连续的能量,于是导致高频变压器和输出周波变换器之间出现电压过冲。因此,这类逆变器通常需要采用缓冲电路或有
[模拟电子]
一种单片机控制的多功能交流稳压电源
1引言
目前我国有些地方由于电力供应紧张,或电力设备严重老化,在用电高峰期,电网超负荷运行,电网电压太低,而在用电低谷期,电网电压太高,这种电压大幅度波动的现象,很容易给一些用电设备带来损害。特别是不断出现的各种智能化仪器仪表、个人电脑等家用电器,对电源质量的要求越来越高,这就需要研制一种高性能的交流稳压电源。
当前市场上的交流稳压电源有继电器控制和伺服电机控制的交流稳压电源两类,前者是一种有级调整,价格低廉,效率较高,但由于是有级调整造成电压跳动和瞬间断电,用于计算机及带微电脑的家用电器、智能化仪器仪表等容易造成故障。后者是一种无级调整、效率高、调压范围宽、波形失真小,但是功能比较单一,性能和可靠性欠佳,没有实现智能
[单片机]
一种新型的补偿式温度巡检电路设计实现(一)
摘 要:介绍了一种新型的补偿式温度巡检电路,该电路通过巧妙的设计克服了传统三线制检测方法中测量导线对测量结果的影响,提高了温度检测精度。同时该电路通过分组共享的方式完成对多路温度信号的巡检,降低了温度巡检电路的复杂度和成本。试验数据验证了该检测电路的精确性和实用性。 1 引言 温度的检测是通过检测温度传感器的电阻值并对阻值与温度曲线关系进行换算来实现的。为了降低温度巡检电路测量复杂度,工程中常采用三线制测量方法进行温度测量。测量电路示意图如图1所示。 Rx1~RxN 分别为温度传感器1~N 的电阻值。以Rx1测量为例,设连接温度传感器1的三根导线电阻均为RL1,当模拟开关K1闭合时,有: 由式(1)可以看出,R
[电源管理]