下面对35个设计步骤作详细的阐述。
[步骤1]确定开关电源的基本参数
(1)交流输入电压最小值:Umin,见表1。
(2)交流输入电压最大值:Umax,见表1。
表1根据交流输入电压范围确定Umin、Umax值
交流输入电压U(V) | Umin(V) | Umax(V) |
---|---|---|
固定输入:100/115 | 85 | 132 |
通用输入:85~265 | 85 | 265 |
固定输入:230±15% | 195 | 265 |
表2反馈电路的类型及UFB参数值
反馈电路类型 | UFB(V) | UO的准确度(%) | SV(%) | SI(%) |
---|---|---|---|---|
基本反馈电路 | 5.7 | ±10 | ±1.5 | ±5 |
改进型基本反馈电路 | 27.7 | ±5 | ±1.5 | ±2.5 |
配稳压管的光耦反馈电路 | 12 | ±5 | ±0.5 | ±1 |
配TL431的光耦反馈电路 | 12 | ±1 | ±0.2 | ±0.2 |
(4)开关频率f:100kHz。
(5)输出电压UO(V):已知。
(6)输出功率PO(W):已知。
(7)电源效率η:一般取80%,除非有更好的数
据可用。
(8)损耗因数Z:Z代表次级损耗与总功耗的比
值。典型值为0.5。
[步骤2]根据输出要求,选择反馈电路的类型以及反馈电压UFB
详见表2。可从4种反馈电路中选择一种合适的电路,并确定反馈电压UFB的值。
[步骤3]根据U、PO值来确定输入滤波电容CIN、
直流输入电压最小值UImin
(1)令整流桥的响应时间tc=3ms。
(2)根据输入电压,从表3中查出CIN值。
(3)得到UImin的值。
表3确定CIN、UImin的值
交流输入电压U(V) | PO(W) | 比例系数(μF/W) | CIN(μF) | UImin(V) |
---|---|---|---|---|
固定输入:100/115 | 已知 | 2~3 | (2~3)×PO | ≥90 |
通用输入:85~265 | 已知 | 2~3 | (2~3)×PO | ≥90 |
固定输入:230±15% | 已知 | 1 | 1×PO | ≥240 |
(1)根据输入电压,从表4中查出UOR、UB值。
(2)步骤25将用到UB值来选择瞬变电压抑制器(TVS)的型号。
(3)TOPSwitch关断且次级电路处于导通状态时,
次级电压会感应到初级。感应电压UOR与UI相叠加后,加至内部功率开关管(MOSFET)的漏极上。此时初级漏感释放能量,并在漏极上产生尖峰电压UL。由于上述不利情况同时出现,极易损坏芯片,因此需给初级增加钳位保护电路。利用TVS器件来吸收尖峰电压的瞬间能量,使上述三种电压之和不超过漏-源击穿电压U(BR)DS值。
表4确定UOR、UB值
U(V) | UOR(V) | UB(V) |
---|---|---|
固定输入:100/115 | 60 | 90 |
通用输入:85~265 | 135 | 200 |
固定输入:230±15% | 135 | 200 |
[步骤5]根据UImin和UOR来确定最大占空比Dmax
Dmax的计算公式为:Dmax=×100%(1)
(1)MOSFET的通态漏-源电压UDS(ON)=10V。
(2)应在U=Umin时确定Dmax。
若将UOR=135V、UImin=90V、UDS(ON)=10V一并代入式(1),可计算出Dmax=64.3%,这与典型值67%非常接近。Dmax随着U的升高而减小,例如当U=Umax=265V时,Dmax=34.6%。
[步骤6]确定初级脉动电流IR与初级峰值电流IP的比值KRP
定义比例系数
KRP=IR/IP(2)
(1)当U确定之后,KRP有一定的取值范围。在110V/
115V或宽范围电压输入时,可选KRP=0.4,当230V输入时,取KRP=0.6。
(2)在整个迭代过程中,可适当增大KRP的值,但不得超过表5中规定的最大值。
表5确定KRP
U(V) | KRP | |
---|---|---|
最小值(连续模式) | 最大值(不连续模式) | |
固定输入:100/115 | 0.4 | 1.0 |
通用输入:85~265 | 0.4 | 1.0 |
固定输入:230±15% | 0.6 | 1.0 |
计算下列参数(电流单位均取A):
(1)输入电流的平均值IAVGIAVG=(3)
(2)初级峰值电流IPIP=(4)
(3)初级脉动电流IR〔可由式(2)求得〕
(4)初级有效值电流IRMSIRMS=IP(5)
[步骤8]根据电子数据表格和所需IP值,选择TOPSwitch芯片
(1)所选极限电流最小值ILIMIT(min)应满足
0.9ILIMIT(min)≥IP(6)
(2)若芯片散热不良,则选功率稍大些的芯片。
[步骤9和步骤10]计算芯片的结温Tj
(1)计算结温TjTj=〔IRMS2×RDS(ON)+CXT(UImax+UOR)2f〕·
RθA+25℃(7)
式中:CXT是漏极结点的等效电容。括号内第二项代表当交流输入电压较高时,由于CXT不断被充放电而引起的开关损耗,可用PCXT表示。
(2)计算过程中若发现Tj>100℃,应选功率较大的TOPSwitch芯片。
[步骤11]验算IP
IP=0.9ILIMIT(min)(8)
(1)输入新的KRP值且从最小值开始迭代,直到
KRP=1.0。
(2)检查IP值是否符合要求。
(3)迭代KRP=1.0或IP=0.9ILIMIT(min)。
[步骤12]计算初级电感量LPLP=·(9)
式中:LP的单位取μH。
[步骤13]选择磁芯与骨架并确定相关参数
从厂家提供的磁芯数据表中查出适合该输出功率的磁芯型号,以及有效截面积(SJ)、有效磁路长度(l)、等效电感(AL)、骨架宽度(b)等参数值。
[步骤14]设定初级层数d和次级匝数NS的初始值
设定d=2层。当U=85V~265V时取NS=0.6匝;再用迭代法计算NS;亦可根据次级每伏匝数和UF1值,直接计算NS值(参见步骤15)。
在步骤15至步骤22中必须确定高频变压器的9个主要参数:初级电感量LP,磁芯气隙宽度δ,初级匝数NP,次级匝数NS,反馈绕组匝数NF,初级裸导线直径DPm,初级导线外径DPM,次级裸导线直径DSm和次级导线外径DSM。上述参数中,除LP可直接用公式单独计算外,其余参数都是互相关联的,因此通常从次级匝数开始计算。另外鉴于反馈绕组上的电流很小(一般小于10mA),对其线径要求不严,因此不需计算导线的内、外直径。
[步骤15]计算次级匝数NS
对于230V或宽范围输入应取0.6匝/V,现已知UO=7.5V,考虑到在次级肖特基整流管上还有0.4V的正向压降UF1,因此次级匝数为(UO+UF1)×0.6=4.74匝。由于次级绕组上还存在导线电阻,也会形成压降,实取NS=5匝。下面就以该数据作为初始值分别计算其余7个参数。
[步骤16]计算初级匝数NPNP=NS×(10)
将UOR=85V,UO=7.5V,UF1=0.4V,NS=5匝一同代入式(10),计算出NP=53.8匝。实取54匝。
[步骤17]计算反馈绕组匝数NFNF=NS×(11)
将NS=5匝,UFB=10.4V,UF2=0.7V,UO=7.5V,UF1=0.4V代入式(11),计算出NF=7.03匝。实取7匝。
[步骤18]根据初级层数d、骨架宽度b和安全边距M,计算有效骨架宽度bE(单位是mm)
bE=d(b-2M)(12)
将d=2,b=8.43mm,M=0代入式(12),求得bE=16.86mm。
再计算初级导线的外径(带绝缘层)DPMDPM=(13)
将bE=16.86,NP=54匝代入式(13),求得DPM=0.31mm。扣除漆皮后裸导线的内径DPm=0.26mm。
[步骤19]验证初级导线的电流密度J是否满足初级有效值电流IRMS=0.32A之条件J==(14)
将DPm=0.26mm、IRMS=0.32A代入式(14),得到J=6.06A/mm2。电子数据表格中实取6.17A/mm2。
若J>10A/mm2,应选较粗的导线和较大的磁芯骨架,使J<10A/mm2。若J<4A/mm2,应选较细的导线和较小的磁芯骨架,使J>4A/mm2;亦可适当增加NP的匝数。
[步骤20]计算磁芯中的最大磁通密度BMBM=(15)
将IP=0.74A,LP=623μH,NP=54匝,磁芯有效横截面积SJ=0.41cm2代入式(15),计算出BM=0.2082T。电子数据表中实取0.2085T。
需要指出,若BM>0.3T,则需增加磁芯的横截面积或增加初级匝数,使BM在0.2~0.3T范围之内。如BM<0.2T,就应选择较小的磁芯或减小NP值。
[步骤21]计算磁芯的气隙宽度δδ=40πSJ(16)
式中δ的单位是mm。将SJ=0.41cm2,NP=54匝,LP=623μH,磁芯不留间隙时的等效电感AL=2.4μH/匝2代入式(16),计算出δ=0.22mm。气隙δ应加在磁芯的磁路中心处,要求δ≥0.051mm。若δ小于此值,需增大磁芯尺寸或者增加NP值。
[步骤22]计算留有气隙时磁芯的等效电感ALGALG=(17)
将LP=623μH,NP=54匝,代入式(17),得到ALG=0.214μH/匝2。电子数据表中实取0.215μH/匝2。
需要说明两点:
(1)ALG值必须在选好NP值以后才能确定。
(2)如上所述,高频变压器的设计是一个多次迭
代的过程。例如当NP改变后,NS和NF的值也一定会按一定的比例变化。此外,在改变磁芯尺寸时,需对J、BM、δ等参数重新计算,以确信它们仍在给定的范围之内。这表明若计算结果与电子数据表格中的数值略有差异,也属正常现象,因二者迭代过程未必完全一致。
[步骤23]确定次级参数ISP、ISRMS、IRI、DSM
(1)计算次级峰值电流ISP
次级峰值电流取决于初级峰值电流以及初、次级匝数比,有公式ISP=IP×(18)
将IP=0.74A,NP=54匝,NS=5匝代入式(18),得到ISP=7.99A。
(2)计算次级有效值电流ISRMS
次级纹波电流与峰值电流的比例系数KRP与初级完全相同,区别仅是对次级而言,KRP反应的是次级电流在占空比为(1-Dmax)时的比例系数。因此,计算次级有效值电流ISRMS时,须用下面公式:ISRMS=ISP(19)
表6选择钳位二极管和阻塞二极管
U(V) | 钳位电压UB(V) | 钳位二极管 | 阻塞二极管 |
---|---|---|---|
固定输入:100/115 | 90 | P6KE91(91V/5W) | BYV26B(400V/1A) |
通用输入:85~265 | 200 | P6KE200(200V/5W) | BYV26C(600V/1A) |
固定输入:230±15% | 200 | P6KE200 | BYV26C |
将ISP=7.99A,Dmax=51%,KRP=0.92代入式(19),求得ISRMS=3.35A。电子表格中的计算结果为3.36A。
(3)计算输出滤波电容上的纹波电流IRIIRI=(20)
将ISRMS=3.36A,IO=2A代入式(20),求得IRI=2.70A。
最后计算次级裸导线直径,有公式DSm=·=1.13(21)
将ISRMS=3.36A,J=5.18A/mm2代入式(21),求得DSm=0.91mm。实选?0.900mm的公制线规。需要指出,当DSm>0.4mm时,应采用?0.4mm的两股导线双线并绕NS匝。与单股粗导线绕制方法相比,双线并绕能增大初级绕组的等效横截面积,改善磁场耦合程度,减小磁场泄漏及漏感。此外,用双线并绕方式还能减小次级导线的电阻值,降低功率损耗。
若选用三重绝缘线来绕制初级绕组,则导线外径(单位是mm)的计算公式为:DSM=(22)
将b=8.43mm,M=0,NS=5匝代入式(22),求得DSM=1.69mm。可选导线直径DSm≥0.91mm而绝缘层外径DSM≤1.69mm的三重绝缘线。
[步骤24]确定次级整流管、反馈电路整流管的最高反向峰值电压:U(BR)S、U(BR)FB
有公式:U(BR)S=UO+UImax·(23)U(BR)FB=UFB+UImax·(24)
将UO=7.5V,UFB=10.4V,UImax=375V,NS=5匝,NP=54匝,NF=7匝,分别代入以上两式,求得U(BR)S=42.2V,U(BR)FB=59V。这与电子表格中给出的结果完全相同。
[步骤25]选择钳位二极管和阻塞二极管
见表6。对于低功率的TOP200、TOP201、TOP210型单片开关电源,可选UB=180V的瞬变电压抑制器。
[步骤26]选择输出整流管
输出整流管宜采用肖特基二极管,此类管子的压降低、损耗小,能提高电源效率。典型产品有MOTOROLA公司生产的MBR系列。要求管子的最高反向工作电压URM≥2U(BR)S,〔U(BR)S为整流管实际承受的最大反向峰值电压〕;其标称电流IF1≥3IO(IO为最大连续输出电流)。
肖特基二极管的最高反向工作电压一般不超过100V,仅适合做低压、大电流整流用。当UO≥30V时,需用耐压100V以上的超快恢复二极管来代替肖特基二极管,此时电源效率会略有下降。
[步骤27]利用步骤23得到的IRI,选择输出滤波电容COUT
(1)滤波电容在105℃、100kHz时的纹波电流应≥IRI。
(2)要选择等效串联电阻很低的电解电容器。等效串联电阻的英文缩写为ESR,符号为r0。它表示在电容器的等效电路中,与之相串联的代表电容器损耗的等效电阻,简称串联损耗电阻。输出的纹波电压URI由下式决定:
URI=ISP·r0(25)
式中的ISP由步骤23得到。
(3)为减小大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容总的r0值和等效电感L0。
(4)COUT的容量与最大输出电流IOM有关。例如,当UO=5~24V、IOM=1A时,COUT取330μF/35V;IOM=2A时COUT应取1000μF/35V。
[步骤28~29]当输出端的纹波电压超过规定值时,应再增加一级LC滤波器
(1)滤波电感L=2.2μH~4.7μH。当IOM小于
1A时可采用由非晶合金磁性材料制成的磁珠;大电流时须选用磁环绕制而成的扼流圈。
(2)为减小L上的压降,宜选较大些的滤波电感或增大线径。通常可取L=3.3μH。
(3)滤波电容C取120μF/35V,要求其r0很小。
[步骤30]选择反馈电路中的整流管
见表7。表中的URM为整流管最高反向工作电压,U(BR)FB是由步骤24得到的,要求:
URM≥1.25U(BR)FB(26)
[步骤31]选择反馈滤波电容
应取0.1μF/50V的陶瓷电容器。
表7选择反馈电路中的整流管
整流管类型 | 整流管型号 | 最高反向工作电压URM(V) | 生产厂家 |
---|---|---|---|
玻封高速开关硅二极管 | IN4148 | 75 | 国产 |
超快恢复二极管 | BAV21 | 200 | Philips公司 |
UF4003 | 200 | GI公司 |
[步骤32]选择控制端电容及串联电阻
控制端电容一般取47μF/10V,普通电解电容即可。与之相串联的电阻可选6.2Ω/0.25W。在不连续模式下可去掉此电阻。
[步骤33]按从表2中选定的那种反馈电路,选取元器件值。
[步骤34]选择输入整流桥
(1)整流桥的反向击穿电压UBR应满足下式要
求:UBR≥1.25Umax(27)
式中的Umax值从第步骤1得到。
(2)设输入有效值电流为IRMS,整流桥额定的有效值电流为IBR,应当使IBR≥2IRMS。计算IRMS的公式如下:IRMS=(28)
式中:cosφ为开关电源的功率因数,一般为0.5~0.7。若无可信的数据,可选cosφ=0.5。
上一篇:开关电源控制环路如何设计
下一篇:皮卫星智能航天电源系统设计
推荐阅读最新更新时间:2023-10-18 16:01
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox