大规模现场可编程门阵列(FPGA)开发系统电源设计研究

最新更新时间:2011-11-07来源: 互联网关键字:现场可编程门阵列  电源设计  DC/DC变换器 手机看文章 扫描二维码
随时随地手机看文章

摘要:以Xilinx的FPGA为例,介绍了FPGA开发系统的电源要求和功耗,并给出了采用线性低压降(LDO)稳压器,DC/DC调整器,DC/DC控制器和电源模块等几种电源解决方案。

关键词:现场可编程门阵列;电源设计;DC/DC变换器

 

1    引言

    现场可编程门阵列(FPGA)的出现给电路设计带来了极大的方便,目前,在芯片设计领域也采用FPGA来开发仿真验证平台。这种开发系统的FPGA一般规模较大,功耗也相对较高,因此,其供电系统的好坏直接影响到整个开发系统的稳定性。所以,设计出高效率、高性能的FPGA供电系统具有极其重要的意义。

2    FPGA电源指标要求

    我们以Xilinx的FPGA为例,包括Virtex II,Virtex-II Pro,Spartan II和Spartan IIE系列,介绍FPGA的电源指标要求。

2.1    额定电压

    FPGA对电源的要求与DSP非常相似,一般需要2.5V,1.8V或1.5V作为核心电压,3.3V或2.5V作为I/O电压,另外Virtex II和Virtex-II Pro还需要3.3V的辅助电压。表1列举了Xilinx不同系列FPGA的电压需求。

表1    FPGA电压需求

FPGA系列 Virtex-Ⅱ Virtex-ⅡPro Spartan-Ⅱ Spartan-IIE
核心电压/V 1.5 1.5 2.5 1.8
I/O电压/V 3.3 2.5 3.3 3.3
辅助电压/V 3.3 3.3

2.2    电压上升时间

    为了保证FPGA正常启动,核心电压(VCCINT)的上升时间tr必须在特定的范围内,表2列举了不同系列FPGA的这一指标要求。此外,电压上升必须单调,不允许有波动。某些DC/DC变换芯片,比如TI的TPS5461X系列可以外部调节电压上升时间,给设计带来了方便。

表 2    核 心 电 压 上 升 时 间 要 求

FPGA系列 Virtex Ⅱ Virtex Ⅱ Pro Spartan Ⅱ Spartan IIE
tr要求 1 ms<tr< 50 ms 100 μs<tr< 50 ms tr< 50 ms 2 ms<tr< 50 ms

2.3    供电电压顺序

    根据Xilinx的文档,对于Virtex II和Virtex-II Pro系列FPGA没有电压顺序要求,推荐所有的供电电压同时上电,否则,可能产生较大的启动电流。对于Spartan-IIE系列,推荐核心电压和I/O电压同时供给。对于Spartan II系列上电顺序可以任意。

    设计经验表明,大部分情况下对于Xilinx的FPGA来说,核心电压先于I/O电压供给是个比较好的做法。

2.4    电流监测和限制

    对于Spartan II和Spartan IIE系列FPGA,电流监测和限制一般不推荐使用,因为,在核心电压(VCCINT)上升至0.6V到0.8V之间时,该系列FPGA会产生一个较大的启动涌入电流,如果存在监测电路就会降低输出电压以限制电流,使电压上升产生波动。如果一定要采用监测电路,启动限制电流不能低于核心电压(VCCINT)额定电流的2倍。对于其他系列FPGA由于不存在涌入电流,所以无此要求。

2.5    电压功耗估计

    FPGA由一个未连接的电路单元阵列组成,通过用户编程进行配置。FPGA的电源功耗一般取决于以下因素:内部资源的使用率,工作时钟频率,输出变化率,布线密度,I/O电压等,见表3。不同的应用,电源实际功耗相差非常大。

表3    FPGA电源功耗因素

核心电压功耗因素 I/O电压功耗因素
工作时钟频率 工作时钟频率
逻辑单元使用率 使用的I/O数目
RAM使用率 输出变化率
输出变化率 I/O标准
布线密度 输出驱动和负载

    Xilinx的电源估计软件是一个准确估计各系列FPGA功耗的一个很好的工具。利用此工具我们得到了VirtexII系列FPGA的电流估计结果,见表4。表4中我们做了如下假定:输出变化率25%(450MHz)和15%(100MHz);逻辑单元使用率为100%;器件工作在单一频率下;布线密度为中等;输出负载电容为30pF;I/O使用率为100%;50%的I/0端口为输入,其余的为输出;输出I/O中16个为DDR标准,其余的为SDR标准。

表4    VirtexII系列FPGA电源功耗

器件型号 VCCINT

/V

VCCAUX

/V

VCCO

/V

Max

I/O

ICCINT at

450MHz/A

ICCAUX

/mA

ICCO at

450MHz/A

ICCINT at

100MHz/mA

ICCO at

100MHz/mA

XC2V500 1.5 3.3 3.3 264 9.87 10 0.58 1804 79
XC2V1000 1.5 3.3 3.3 432 14.6 10 0.91 2585 124
XC2V1500 1.5 3.3 3.3 528 20.5 20 1.1 3566 149
XC2V2000 1.5 3.3 3.3 624 27.3 20 1.28 4758 174
XC2V3000 1.5 3.3 3.3 720 39.8 20 1.49 6971 200
XC2V4000 1.5 3.3 3.3 912 60.2 30 1.85 10454 251
XC2V6000 1.5 3.3 3.3 1104 84.5 40 2.25 14528 303
XC2V8000 1.5 3.3 3.3 1108 111.24 50 2.25 19272 304

 

3    现有的FPGA电源解决方案

    根据采用FPGA系列的不同,核心和I/O电压可能是3.3V,2.5V,1.8V和1.5V(参见表1),目前总的来说有三种电源解决方案,分别是线性稳压器电源(LDO),开关稳压器电源(DC/DC调整器和DC/DC控制器,两者的差别主要是内部是否集成FETs),电源模块。在选择方案时,要求设计者综合考虑系统要求,成本,效率,市场需要,设计灵活性及封装等众多因素。

3.1    LDO线性稳压器电源

    LDO线性稳压器只适用于降压变换,具体效果与输入/输出电压比有关。从基本原理来说,LDO根据负载电阻的变化情况来调节自身的内电阻,从而保证稳压输出端的电压不变。其变换效率可以简单地看作输出与输入电压之比。如今很多厂商都有适合FPGA应用的低电压、大电流LDO芯片,比如TI的TPS755XX和TPS756XX系列为5A电流输出,TPS759XX系列为7.5A电流输出;Linear的LT1585/A系列为5A输出,LT1581为10A输出;National的LMS1585A系列也为5A输出,并与Linear的LT1585/A系列可以相互替换。LDO芯片所占面积仅为几个mm2,只要求外接输入和输出电容即可工作。由于采用线性调节原理,LDO本质上没有输出纹波。不过随着LDO的输入/输出电压差别增大或者输出电流增加,LDO的发热比也会按比例增大,所以,对散热控制方面要求很高。图1以National的LMS1585A为例的LDO稳压器的典型设计电路,LMS1585A系列有三种型号,分别为1.5V,3.3V和可调电压输出,最大输出电流均为5A。

(a)    3.3/1.5 V固 定 输 出

(b)    可 调 电 压 输 出

图 1    LDO稳 压 器 的 典 型 设 计 电 路

3.2    DC/DC调整器电源

    DC/DC调整器利用了磁场储能,无论升压、降压还是两者同时进行,都可以实现相当高的变换效率。与线性稳压(LDO)相比,尽管它要求更大的电路板面积,但对于FPGA这种需要大电流的应用来说却十分理想。由于变换效率高,因此发热很小,这也使得散热处理得以简化。特别是,与LDO器件相比,它常常不需要附加一个成本较高、面积较大的散热器。考虑到DC/DC调整器集成有FETs,使用时只需外接一个电感和必不可少的输入、输出电容,故可以使整个解决方案的空间利用率大大提高。由于是开关稳压器电源,与线性稳压器电源(LDO)相比,DC/DC调整器输出纹波电压较大、瞬时恢复时间较慢、容易产生电磁干扰(EMI)。要取得低纹波、低EMI、低噪声的电源,关键在于电路设计,尤其是输入/输出电容、输出电感的选择和布局,都有相当的讲究。目前不少IC厂家都有这种适合FPGA应用的大电流DC/DC调整器芯片,最大输出电流达到了9A,比如Elantec的EL7556BC为6A输出,EL7558BC为8A输出;TI的TPS5461X系列为6A输出,TPS54873为9A输出。本文第4部分将以TI的TPS5461X系列为例介绍DC/DC调整器电源设计的实例,参见图4。

3.3    DC/DC控制器电源

    DC/DC控制器和DC/DC调整器的差别主要是没有内置的FETs,因此,它能够保证设计有很大的灵活性,设计者可以选用有特定导通电阻的外接FET晶体管,并根据应用的需要调整电流限。这在需要十几甚至几十A电流的特大规模FPGA开发系统中非常有用。与DC/DC调整器相比,采用这种方案设计,既要选择适当的输入/输出电容、输出电感,又要选择符合要求的FET,增加了设计难度和总成本。此外,由于FET外置,占用空间也相对较大。目前DC/DC控制器芯片市场上非常多,比如TI,Linear,Maxim,National等公司都有相应的产品,规格也相当全,仅Maxim一家就有数十种此类产品,设计者可以根据自己的需求选择合适的芯片。图2以Maxim的MAX1961为例,描述了DC/DC控制器电源设计的典型电路。MAX1961输入电压为2.35V到5.5V;有4个预设的输出电压(1.5V,1.8V,2.5V和3.3V),偏差低于0.5%;输出电流最高可达20A。

图2    DC/DC控 制 器 电 源 设 计 典 型 电 路

3.4    电源模块

    电源模块一般以可插拔的形式给出。就原理上来说,它通常也是个开关稳压器,所以它的效率也非常高,而且相对于普通开关稳压器,它的集成度更高,外围只需要一个输入电容和一个输出电容即可工作(这一点于LDO类似),设计相当简便,特别适合要求开发周期非常短的应用,尤其是原型机的设计。由于电源模块上集成了几乎所有可以集成的东西,灵活性相对较差,价格也相对较高。图3以TI的PT6943为例,描述了用电源模块设计FPGA电源的典型电路。PT6943是TI的PT6940系列电源模块的一种,输入为4.5V至5.5V,它支持3.3V和1.5V两路输出,每路输出的最大电流均为6A,它内部还集成了电压顺序控制,短路保护等功能。

图 3    用 电 源 模 块 设 计 FPGA电 源 典 型 电 路

4    FPGA开发板电源设计实例

    我们采用TI公司TPS5461X系列DC/DC调整器芯片的TPS54616(输出3.3V/6A)和TPS54613(输出1.5V/6A),设计了基于FPGA的MPEG4解码芯片*仿真演示开发板的电源(3.3至5V输入,3.3V和1.5V输出)。开发板上有两块Xilinx的XC2V2000FPGA芯片,规模相对较大。电源部分电路如图4所示。输入、输出电容采用低等效串联电阻(ESR)的钽电解电容,输出电感选用了Pulse公司的PD0120.702,其电感值为7.1μH,直流电阻为9.5mΩ,饱和电流为12.6A。TPS54613的PWRGD输出连接了TPS54616的SS/ENA引脚,当TPS54613输出电压低于1.35V(正常值的90%)时,PWRGD为低,TPS54616处于关闭状态,当TPS54613输出电压高于1.35V时,PWRGD变高,TPS54616开始工作;在关闭电源时,TPS54613输出电压降到1.35V时,PWRGD变低,关断了TPS54616给I/O供电,使得周边接口先掉电,从而保证了FPGA核心电压优先于I/O电压的供电顺序,符合一般设计规律。经实际测试,电源各项指标均符合系统要求。

图4    FPGA开发板电源设计实例电路

5    结语

    在设计大规模FPGA开发板电源时,开发者要在系统整体方案的成本,电路板面积和效率之间进行折中。LDO稳压器为电流输出要求较低的应用提供了体积小且廉价的解决方案;DC/DC调整器解决方案能够保证高得多的电源变换效率,散热简单,是一般FPGA电源的理想选择;DC/DC控制器解决方案设计灵活,输出电流大,是特大规模FPGA开发板的最佳选择;电源模块即插即用,为FPGA电源设计提供了一种最为快捷的解决方案。

关键字:现场可编程门阵列  电源设计  DC/DC变换器 编辑:冰封 引用地址:大规模现场可编程门阵列(FPGA)开发系统电源设计研究

上一篇:大功率装置用多路输出高压隔离新型开关电源设计
下一篇:电源优化器助太阳能电池提升效率

推荐阅读最新更新时间:2023-10-18 16:02

浅谈数字电源设计与技术实现
  一、什么是数字电源,跟模拟电源最本质的区别?   所谓数字化电源的本质在于电源对输出电流/电压的PWM调节是由数字芯片按照一定的数字控制方式和算法产生,这是数字电源的最本质特征. 那些扩充了8位、16位单片机来提供数字输入输出操作界面、远程通讯接口但是电源的PWM调节还是依赖模拟电源调制芯片的电源,只能说它们长了个数字电源的脸,但是没有数字电源的“芯”。   二、数字电源实现的技术瓶颈问题有哪些?   目前数字电源依然存在高速/高精度的ADC技术问题(数字电源反馈输入);高速/高精度的电源PID调节或者其他算法的PWM调节;高速/高精度的PWM输出问题(数字电源DAC输出)。   很多的32位DSP/A
[电源管理]
采用FPGA解决通信接口问题
为通信系统器件所提供的接口技术种类繁多,令人困惑。设计者应根据所需功能选择器件,采用FPGA解决当中的接口和互用性问题。   引言   在过去两年里,用于消除IC、电路板和系统之间数据传输瓶颈的接口标准层出不穷,本文将考评通信应用标准部件的某些最流行的标准,并研究众多新标准出现的原因,此外还探讨设计者可如何解决互用性的难题。   新兴接口标准综述   如果查看一下典型通信系统的结构,可以看出很多元件都需要相互进行通信。为满足数据通道中各种元件的不同需求,因而出现了各种不同的接口标准。要了解各种接口的优缺点,就需要查看元件本身及每个元件所发生的通信类型。这里将从光电接口开始,然后逐一介绍内部
[嵌入式]
用于汽车启停的低耗能电源设计的几种方法
随着城市快节奏的发展,大多数人拥有自己的车,这也使得交通变得拥堵,而汽车在高峰期的走走停停会耗掉很多的能源,不仅浪费还污染环境。故而引进了汽车系统中的“启停”功能,但是这种系统也给汽车电子带来了一些独特的工程技术挑战,汽车启停系统中电源设计是一大难题。本文就为大家介绍一种用于汽车启停的低耗能电源设计。 为了控制燃油消耗,许多汽车制造商在下一代汽车中实现了“启停”功能,而且为数众多的这种汽车已经开始上路。这些系统会在汽车停下来时关闭发动机,当脚从刹车踏板移动到加速踏板——或者在使用手动档情况下释放离合器踏板重新接入动力时又自动重新启动发动机。在城市行驶和停停走走的高峰时段这种功能非常有助于减少燃油消耗。 然而,这种系统也给汽车
[电源管理]
用于汽车启停的低耗能<font color='red'>电源设计</font>的几种方法
京微雅格首家发售集MCU与存储功能为一体的金山系列FPGA
---- 该系列 FPGA 通过集成片上 MCU 处理器、 SRAM 存储器、 Flash 配置存储器、 RTC 片内时钟等硬件单元,实现了同类器件所不具备的集成度、高性能和低成本性。 2012 年 8 月 16 日,北京讯 ---- 国内首家片上可配置应用 CAP ( Configurable Application Platform )平台的先行者和领导者京微雅格( Capital-Micro )今天宣布,开始发售其新一代全新架构的 CME-M5 ( 金山 ) FPGA 器件,该系列通过集成片上 MCU 处理器、
[嵌入式]
京微雅格首家发售集MCU与存储功能为一体的金山系列<font color='red'>FPGA</font>
Power Integrations与SnapMagic携手推进电源设计自动化
使用PI Expert and SnapMagic可在数分钟内完成从电源规格到PCB布局的整个过程 美国加州圣何塞和旧金山 – 2023年10月5日讯 – 深耕于高压集成电路(IC)高能效功率变换领域的知名公司Power Integrations 和致力于通过简化设计流程重新定义电子产品设计方式的公司SnapMagic今日宣布, Power Integrations强大的在线设计工具PI Expert™现在已具备电路原理图和网络表导出功能,这一改进得益于SnapMagic全新的电路原理图导出技术。 根据用户输入的规格参数,PI Expert可采用Power Integrations的功率变换IC自动生成完整的电源原理
[电源管理]
Power Integrations与SnapMagic携手推进<font color='red'>电源设计</font>自动化
开关电源设计之MOS管反峰及RCD吸收回路
对于一位开关电源工程师来说,在一对或多对相互对立的条件面前做出选择,那是常有的事。而我们今天讨论的这个话题就是一对相互对立的条件。(即要限制主MOS管最大反峰,又要RCD吸收回路功耗最小)   在讨论前我们先做几个假设:   ① 开关电源的工作频率范围:20~200KHZ;   ② RCD中的二极管正向导通时间很短(一般为几十纳秒);   ③ 在调整RCD回路前主变压器和MOS管,输出线路的参数已经完全确定。   有了以上几个假设我们就可以先进行计算:    一﹑首先对MOS管的VD进行分段:   ⅰ,输入的直流电压VDC;   ⅱ,次级反射初级的VOR;   ⅲ,主MOS管VD
[电源管理]
Altium推出NanoBoard系列FPGA开发板最新产品
  日前,Altium宣布推出 NanoBoard 系列FPGA开发板的最新产品。   NanoBoard 3000 是可编程设计环境,配套提供了完整的软硬件、免专利费的即用型 IP 以及专用 Altium Designer Soft Design许可证。   设计人员可由此拥有开发 FPGA 所需的一切。他们无需再从事大量的繁琐工作,如通过网络搜索驱动器、外设或者其它软件,然后再竭力将所有这些要素进行集成,使其能够协作。   Altium 首席执行官 Nick Martin 表示:“我们的 NanoBoard 3000 的开发,旨在为新一代智能型互连电子产品的设计、原型设计以及部署的整个过程提供支持。
[嵌入式]
Altium推出NanoBoard系列<font color='red'>FPGA</font>开发板最新产品
电源设计小贴士:低成本、高性能LED驱动器
随着 LED 生产成本的下降,LED 在各种应用中的使用率越来越高,其中包括手持设备、车载以及建筑照明。其高可靠性(使用寿命超过 50000 小时)、高效率(175 流明/瓦)以及近乎瞬时的响应使其成为一种颇具吸引力的光源。但是,驱动 LED 却是一项很具挑战性的工作。 受控的亮度需要用一个恒定的电流来驱动 LED,无论输入电压如何这一恒定的电流都必须保持恒定不变。通常,LED 都会有调光要求,例如,想要调节显示器或建筑照明亮度。实现 LED 调光有两种方法:改变 LED 电流或使用脉宽调制 (PWM)。效率最低的方法是改变电流,因为光输出并非完成随着电流变化而发生线性变化,并且在电流低至其额定值时 LED 色谱会发生变化。
[电源管理]
<font color='red'>电源设计</font>小贴士:低成本、高性能LED驱动器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved