一种多功能逆变电源的设计与实现

最新更新时间:2011-12-20来源: 互联网关键字:多功能逆变电源  二重级联  滞环控制 手机看文章 扫描二维码
随时随地手机看文章

    1 引言

    随着现代科技的发展,逆变电源广泛应用到各行各业,进而对其性能提出了更高的要求。传统的逆变电源多为模拟控制或数字相结合的控制系统。好的逆变电源电压输出波形主要包括稳态精度高,动态性能好等方面[1]。目前逆变器结构和控制,能得到良好的正弦输出电压波形,但对突变较快的波形,效果不是很理想。
函数信号发生器,是实验教学中常用的设备。能产生不同频率和电压等级的波形:方波信号,三角波,正弦信号波形。近年兴起的一种新的DDS技术,即直接数字频率合成技术。但是他们都为小信号波,没有功率输出,不能带一定的负载。

    本文提出的多功能逆变电源,主电路采用二重单相全桥逆变器结构,输出的电压波形对给出的参考波形跟踪,有功率输出,能带一定的负载。控制采用加入微分环节的滞环控制,完全实现数字化控制。

    2 主电路设计

    多功能逆变电源原理如图1,有两部分组成:主电路和控制部分。其中主电路的参考信号,可以与计算机通信或者其他电路得到。

 图1 多功能逆变电源原理

    在主电路的设计上借鉴了多重逆变器结构,采用了二重单相全桥逆变器连接[2]。原理图如图2。两个逆变器直流侧电压不相同,主逆变器的直流侧电压为Udc,从逆变器的直流侧电压为3Udc。输电电压波形共有9个电平组成:±4Udc,±3Udc,±2Udc,±Udc,0。由于输出电平的数量多于单个逆变器,输出波形较好。主逆变器工作为较高频率,从逆变器工作频率较低,极大的降低开关损耗。在参考波形变化缓慢阶段,只需要主逆变桥工作,就能很好的跟踪参考信号;当参考信号变化相当快速的时刻,需要辅助逆变桥和主逆变桥同时工作,快速精确跟踪参考信号。

 
 图2 二重级联单相全桥逆变器拓扑  

    3 控制设计

    在控制部分采用滞环完全数字化控制。滞环控制响应速度快、准确度较高、跟踪精度高,输出电压不含特定频率的谐波分量等特点,能够使用DSP实现数字化控制[3]。对于主电路的主逆变器和从逆变器采用滞环控制[4]。

 
图3 滞环控制原理

    如图3所示,主开关的滞环宽度为h,从开关管的滞环宽度为hs,且hs>h。主逆变器一直工作,开关管V1和V4;V2和V3交替导通关断。从逆变器有三种工作状态。在t1~t2时刻,误差电压并没有超过从逆变器的滞环宽度,只需要主逆变器工作,四个开关管都关断;在t3时刻,误差电压△u>hs,开关管VS2和VS3导通,开关管VS1和VS4关断;t4时刻误差电压-△u<-hs开关管VS1和VS4导通,开关管VS2和VS3关断。
考虑到跟随突变信号时跟随困难的情况,在滞环控制器前引入了微分环节,如图4所示,以改善跟随效果[5][6]。


图4 带微分环节的滞环控制

    引入微分环节后,根据图1和图2所示,对主逆变器滞环控制策略为:

    式中:T为微分时间常数。

    上述不等号取等号情况,则实际环宽h′为:

    当稳态或者电压变化率不大时微分环节很小,可忽略,h′较大;当电压突变时微分环节将很大,不能忽略,h′较小,u迅速跟踪Uref。加入微分环节实际上就是改变滞环宽度。从逆变器滞环控制也采用相同原理。

    3 仿真

    利用Matlab,根据所提出主电路和控制设计建立模型。对图1的二重级联单相全桥逆变器进行仿真,负载为阻感型。

    参考信号为正弦波,周期T为0.02s,最大值为50V。输出电压波形如图5所示。

      图5 参考信号为正弦波输出电压

    参考信号为三角波,电压最大值为70V,输出电压如图6所示。


        图6 参考信号为三角波输出电压

    从图5和图6看出,当参考信号为变化不是很快的正弦波和三角波信号时,逆变电源的输出电压能精确跟踪。

    参考信号为阶梯波,输出电压波形如图7所示。


 图7 参考信号为方波输出电压

    参考电压信号为方波时,电压值为70V。输出电压波形如图8所示。


 图8 参考信号为方波输出电压

    当参考信号为阶梯波或方波,方波和阶梯波有突变时刻,逆变电源的输出电压也能很好跟踪参考信号。从图7和图8看出,输出电压是质量很好的阶梯波和方波,可作为电压源使用。

    4 结论

    多功能逆变电源,主电路采用二重级联单相全桥逆变器结构,输出的电压波形对给出参考波形跟踪,有功率输出,能带一定的负载,可直接作为电压源使用。控制采用加入微分环节的滞环控制,完全实现数字化控制。最后通过Matlab仿真,证实设计的多功能逆变电源是可行的。

 

参考文献
[1] 刘春瑞.逆变电源数字化控制技术研:[硕士学位论文]. 西安:西安理工大学,2008.
[2] Hongfa Ding,Xianzhong Duan,Qingchun Zhu.Amultifunctional series power quality conditioner based on asymmetry cascade multilevel inverter and its strategy. 2005 IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific Dalian,China,Page(s):1-6.
[3] 王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 2005
[4] G.H. Bode,D.G. Holmes. Implementation of three level hysteresis current control for a single phase voltage source Inverter[J].Powerelectronics specialists conference,2000 IEEE 31st annual volume 1,18-23 June 2000 Page(s):33 – 38.
[5] 毛玉芳,杨振宇.带微分环节的电压滞环控制技术的应用[J] .江苏电机工程,2007,26(1):21-24
[6] 高军,黎辉,杨旭,王兆安.基于PID控制和复控制的正弦波逆变电源研究[J]. 电工电能新技术,2002,21(1):1-4.

关键字:多功能逆变电源  二重级联  滞环控制 编辑:冰封 引用地址:一种多功能逆变电源的设计与实现

上一篇:低电压大电流软开关电源的设计
下一篇:电力谐波抑制与无源电力滤波技术

推荐阅读最新更新时间:2023-10-18 16:15

电压型滞环控制的同步Buck变换器
摘要:阐述了电压型滞环控制和同步Buck变换器的基本原理,并对两项技术结合起来的电压型滞环控制的同步Buck变换器进行了详细的分析。对电压型滞环控制与传统电压型控制在负载瞬态变化时的输出电压进行了仿真比较。结果表明该控制方案所具有对负载瞬态变化有近乎同步响应的优点。在实际应用中采用TI公司的TPS5210芯片实现了滞环控制,验证了仿真结果。最后简要给出了对电压型滞环控制的开关频率进行估算的方法。 关键词:电压型滞环控制;同步Buck变换器;滞环宽度 引言 降低运行电压,获得高性能和高功率密度的下一代微处理器,对电源设计提出了更高的要求。在提高微处理器的速度和积成密度的同时降低功率损耗,所需的运行电压降到1V以下, 从而引
[应用]
一款多功能逆变电源的设计方案
引言   随着现代科技的发展,逆变电源广泛应用到各行各业,进而对其性能提出了更高的要求。传统的逆变电源多为模拟控制或数字相结合的控制系统。好的逆变电源电压输出波形主要包括稳态精度高,动态性能好等方面。目前逆变器结构和控制,能得到良好的正弦输出电压波形,但对突变较快的波形,效果不是很理想。   函数信号发生器,是实验教学中常用的设备。能产生不同频率和电压等级的波形:方波信号,三角波,正弦信号波形。近年兴起的一种新的DDS技术,即直接数字频率合成技术。但是他们都为小信号波,没有功率输出,不能带一定的负载。   本文提出的多功能逆变电源,主电路采用二重单相全桥逆变器结构,输出的电压波形对给出的参考波形跟踪,有功率输出,
[模拟电子]
一款<font color='red'>多功能</font><font color='red'>逆变电源</font>的设计方案
输出电容器的等效串联电阻对滞环控制功率转换器的影响(图
对于经验丰富的电路设计人员来说,他们都知道滞环控制功率转换器的稳定性取决于输出电容器的等效串联电阻(ESR)。假如ESR太小,那么输出电压纹波将会变得较大,并且会对开关信号产生相移。虽然均化和线性化技术在设计与分析固定频率的PWM功率转换器上已有长足的发展,但对滞环控制功率转换器的解析性分析却乏善可陈。由于工作频率是可变的,因此采用非线性控制理论作分析最适合不过。 图1 滞环控制降压转换器 滞环控制功率转换器的运行可如下简述。以图1中的降压转换器为例,当输出电压VOUT下降低于阈值VREF时,那么开关S1便会开启(S2作为互补工作性质)。相反,当VOUT高于VREF时,那S1便会关闭。这种运作方式与可变结构控制系统类似
[电源管理]
输出电容器的等效串联电阻对<font color='red'>滞环控制</font>功率转换器的影响(图
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved