开关电源电磁干扰分析与抗干扰措施

最新更新时间:2012-01-02来源: 21IC关键字:开关电源  电磁干扰  抗干扰 手机看文章 扫描二维码
随时随地手机看文章

开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。
  
开关电源的电磁干扰分析

开关电源的结构如图1所示。首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。

 

  
图1  AC/DC开关电源基本框图

1 内部干扰源

● 开关电路

开关电路主要由开关管和高频变压器组成。开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。开关管负载为高频变压器初级线圈,是感性负载。当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。

● 整流电路的整流二极管

输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。

● 杂散参数

由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。

2 外部干扰源

外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。

开关电源的EMC设计

产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。针对于此,主要采取的方法有:电路措施、EMI滤波、屏蔽、印制电路板抗干扰设计等。

1 降低开关损耗和开关噪声的软开关技术

软开关是在硬开关基础上发展起来的一种基于谐振技术或利用控制技术实现的在零电压/电流状态下的先进开关技术。

软开关的实现方法是:在原电路中增加小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。图2给出了一种使用软开关技术的基本开关单元。

 

  

图2  降压斩波器中的基本开关单元

2 减小干扰源干扰能量的缓冲电路

在开关控制电源的输入部分加入缓冲电路(见图3),其由线性阻抗稳定网络组成,用于消除电力线干扰、电快速瞬变、电涌、电压高低变化和电力线谐波等潜在的干扰。缓冲电路器件参数为D1为MUR460,R1=500Ω,C=6nF,L=36mH,R=150Ω。

 

  
图3  缓冲电路

3 切断干扰噪声传播路径的EMI滤波

在开关电源输入和输出电路中加装EMI滤波器,是抑制传导发射的一个很有效方法。其参数主要有:放电电阻、插入损耗、Cx电容、Cy电容和电感值。其中,插入损耗是滤波器性能的一个关键参数。在考虑机械性能、环境、成本等前提下,应该尽量使插入损耗大一些。用共模、差模干扰的测量结果与标准限值,加上适当的裕量可得到滤波器的插入损耗IL。

ILCM(dB)=Vcm(dB)-Vlimt(dB)-3(dB)+M(dB)                     (1)

ILDM(dB)=VDM(dB)-Vlimt(dB)-3(dB)+M(dB)                    (2)

式中,3dB表示在分离共模、差模传导干扰的测试过程中测试结果比实际值大3dB;M(dB)表示设计裕量,一般取6dB;Vlimit(dB)为相关标准如CISPR,FCC等规定的传导干扰限值。

图4是220V/50Hz交流输入的开关电源交流侧EMI滤波器的电路。Cy=3300pF,L1、L2=0.7mH,它们构成共模滤波电路,抑制0.5~30MHz的共模干扰信号。Cx=0.1μF,L3、L4=200~500μH,采用金属粉压磁芯,与L1/L2、Cx构成L-N端口间低通滤波器,用于抑制电源线上存在的0.15~ 0.5MHz差模干扰信号。R用于消除可能在滤波器中出现的静电积累。

 


  
图4  开关电源交流侧EMI滤波器电路

图5是开关电源的直流输出侧滤波电路,它由共模扼流圈L1、L2,扼流圈L3和电容C1、C2组成。为了防止磁芯在较大的磁场强度下饱和而使扼流圈失去作用,磁芯必须采用高频特性好且饱和磁场强度大的恒μ磁芯。

 

  
图5  支流侧滤波电路

4 用屏蔽来抑制辐射及感应干扰


开关电源干扰频谱集中在30MHz以下的频段,直径r<λ/2π,主要是近场性质的电磁场,且属低阻抗场。可用导电良好的材料对电场屏蔽,而用导磁率高的材料对磁场屏蔽。此外,还要对变压器、电感器、功率器件等采取有效的屏蔽措施。屏蔽外壳上的通风孔最好为圆形,在满足通风的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁的连续性。屏蔽外壳的引入、引出线处要采取滤波措施。对于电场屏蔽,屏蔽外壳一定要接地。对于磁场屏蔽,屏蔽外壳不需接地。

5 合理的PCB布局及布线

敏感线路主要是指控制电路和直接与干扰测量设备相连的线路。要降低干扰水平,最简单的方法就是增大干扰源与敏感线路的间距。但由于受电源尺寸的限制,单纯的增大间距并非解决问题的最佳途径,更为合理的方法是根据干扰电场的分布情况将敏感线路放在干扰较弱的地方。PCB抗干扰布局设计流程如图6所示。

 

  
图6  PCB抗干扰布局设计流程

关键字:开关电源  电磁干扰  抗干扰 编辑:探路者 引用地址:开关电源电磁干扰分析与抗干扰措施

上一篇:开关电源电感器设计要点
下一篇:高频开关电源技术

推荐阅读最新更新时间:2023-10-18 16:18

大功率开关电源的EMC测试分析及正确选择EMI滤波器
   开关电源 具有体积小、重量轻、效率高等优点,广泛应用于各个领域。由于 开关电源 固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。所产生的干扰随着 输出功率 的增大而明显地增强,使整个电网的谐波污染状况愈加严重。对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI 滤波器 ,以达到理想的抑制效果。   1 开关电源产生电磁干扰的机理   图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。这是因为开关电源所产生的干扰噪声所为。开关电源
[测试测量]
大功率<font color='red'>开关电源</font>的EMC测试分析及正确选择EMI滤波器
基于LT3748设计的绝缘反激拓扑开关电源控制技术
本文介绍了LT3748主要特性,方框图以及25W/12V通信电源,汽车IGBT控制电源,±300V 绝缘反激转换器和输入24-96V输出48V/0.5A 电源。Linear 公司的LT3748是开关电源控制器,特别设计用于绝缘反激拓扑和大功率开关电源。输入电压5V-100V,平均栅极驱动源电流和沉电流1.9A,能驱动低边外接功率MOSFET,不需要第三个绕组或光隔离器,并具有可编的软起动,主要用于绝缘的通信转换器,大功率汽车电源和绝缘工业电源。 LT3748主要特性: 5V to 100V Input Voltage Range 1.9A Average Gate Drive Source and Sink Current Bou
[电源管理]
基于LT3748设计的绝缘反激拓扑<font color='red'>开关电源</font>控制技术
基于CPLD的软开关电源数字控制器设计
   1 引言   近年来,随着大功率 开关电源 的发展,对控制器的要求越来越高,开关 电源 的数字化和智能化也将成为未来的发展方向。   目前,我国的大功率开关电源多采用传统的模拟控制方式,电路复杂,可靠性差。因此,采用集成度高、集成功能强大的数字控制器设计开关电源控制器,来适应不断提高的开关电源输出可编程控制、数据通讯、智能化控制等要求。    2.数字控制器设计   本文设计的数字控制器,采用TI公司24X系列DSP控制器中的TMS320LF2407A芯片作为主控制器,主要功能模块包括:(1)DSP与可编程逻 辑器件CPLD相配合实现全桥移相谐振软开关驱动(2)偏磁检测电路;(3)其他功能,如数据采集、保护及外部接口等。
[电源管理]
基于CPLD的软<font color='red'>开关电源</font>数字控制器设计
PowerintLNK460VG100WA19LED灯电源方案(DER322)
Powerint公司的DER322参考设计采用LinkSwitch-PL系列LNK460VG器件,是业界首个可替代100W A19白炽灯的LED驱动器,采用单层PCB,具有低成本少元件数和小尺寸特点,230VAC时的效率大于93%,PF大于0.9,230 VAC; 78 V LED时的THD小于20%,集成了包保护和可靠性特性,热关断自动恢复。本文介绍了LinkSwitch-PL系列产品亮点,方框图,典型应用电路以及DER322参考设计主要特性和指标,电路图,材料清单和PCB布局图。 The LinkSwitch-PL family enables a very small and low cost single-stage pow
[电源管理]
PowerintLNK460VG100WA19LED灯电源方案(DER322)
六种导致开关电源啸叫的情况及解决方法
  开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。那么当这些现象出现时,应当如何解决他们呢?   通常来说,开关电源啸叫的原因一般有下面几种诱因。   变压器浸漆不良   包括未含浸凡立水。啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
[电源管理]
示波器快速测量开关电源实用宝典
使用 U1880A 的 USB 电缆连接偏移校正夹具和示波器背部的 USB 端口。 按下前面板的 键。 按下前面板的 键,然后按下 Features 功能键并选择 Power Application。 按下 Analysis 功能键,然后选择 Power Quality。 按下 Signals 功能键,然后按下 Deskew 功能键。注意,使用 Current Harmonics 和 Switching Loss 测量菜单也可以调用自动偏移校正功能。 如图 6 连接图所示,设置偏移校正夹具上的 S1 开关为“小环路”设置。 将 N2790A 高压差分有源探头分别连接示波器通道 1 输入以及 U1880A 偏移校正
[测试测量]
示波器快速测量<font color='red'>开关电源</font>实用宝典
开关电源变压器的选用与检测方法
1、通过观察 变压器 的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 2、绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 3、线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 4、判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这
[电源管理]
一种新颖的限流比较器的设计
   1 引言   近年来,LDO(Low Dropout)线性稳压器和DC/DC 变换器等电源管理芯片已广泛应用于便携式电子系统中 。但是,开关稳压器相对线性稳压器降低了平均输入电流,提高了效率 。Step-Down 电源属于DC/DC 变换器中的降压变换器,它的主要缺点是,在轻载时比如手机待机时,静态电流较高,显著降低了电池的使用寿命,所以在低负载条件下,我们通过PFM 限流比较器来控制芯片使之进入Idle 模式,这样就大大延长了电池寿命,提高了芯片的效率。    2 本文采用的DC-DC 降压变换器电路结构   本文采用的DC-DC 降压变换器结构采用同步校正器代替传统的二极管,极大地提高了DC-DC 降压
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved