LED照明与功率因数关系解析

最新更新时间:2012-01-05来源: 互联网关键字:LED照明  功率因数 手机看文章 扫描二维码
随时随地手机看文章

交流电流过负载时,加在该负载上的交流电压与通过该负载的交流电流产生相位差,人们便从中引出功率因数这一概念。人们生产、生活用电来自电网,电网提供频率为50Hz或60Hz的交流电。作为交流电的负载有电阻、电感、电容三种类型。

 

 当交流电通过纯电阻负载时,加在该电阻上的交流电压与通过该电阻的交流电流是同相位的,即它们之间的相位夹角ф= 0°,同时在电阻负载上消耗有功功率,电网要供出能量。当交流电通过纯电感负载时,其上的交流电压的相位超前交流电流相位90°,它们之间的夹角ф= 90°,在电感负载上产生无功功率,电网供给的电能在电感中变为磁场能短暂储存后又回馈到电网变为电能,如此周期性循环不已,结果电网并不供出能量,故谓“无功功率”,但产生“无功功率”的“无功电流”还是实际存在的。当交流电通过纯电容负载时,亦类似于此,只不过其上的交流电压的相位滞后交流电流相位90°,它们之间的夹角ф= - 90°。

这里,定义相位角度超前为正,相位角度滞后为负。实际负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学式即是:阻抗Z= R+j ( XL – XC) 。其中R为电阻,XL为感抗,XC为容抗。如果( XL– XC) > 0, 称为“感性负载”;反之,如果( XL – XC) < 0称为“容性负载”。交流电通过感性负载时,交流电压的相位超前交流电流相位(0°<ф<90°);交流电通过容性负载时,交流电压的相位滞后交流电流相位(-90°<ф< 0°);电工学定义该角度ф为功率因数角,功率因数角ф的余弦值即Cosф叫做功率因数。对于电阻性负载,其电压与电流的位相差为0°,因此,电路的功率因数为1最大(Cos 0°=1);而纯电感电路,电压与电流的位相差为90°,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为- 90°,即电流超前电压。在后两种电路中,功率因数都为零(Cos 90°= 0)。对于一般性负载的电路,功率因数就介于0与1之间。由数学式阻抗Z= R+ j ( XL – XC),如果XL = XC,则Z= R
即阻抗Z变成了一个纯电阻,功率因数便等于1。

这就是说,感性负载和容性负载可以互相补偿,一个电路里的感性元件的感抗值正好等于容性元件的容抗值则可以完全补偿,功率因数补偿的办法就源于此。交流电通过阻抗负载时,产生的总功率S称“视在功率”,视在功率S包括有功功率P和无功功率Q两个分量。其中有功功率P = S*Cosф,无功功率Q = S*Sinф。只有当功率因数Cosф值等于最大值1即ф= 0°时,无功分量Q才等于零,有功功率P等于视在功率 S的值。但负载的实际工作能力只与有功功率相关

功率因数与LED照明

摘要:叙述了功率因数、功率因数补偿的概念,由LED灯具容性负载特点,论证在LED照明灯具内无需增加功率因数补偿电路的结论。

功率因数偏低的害处

1)供电设备的带负载能力被打了折扣,即降低了带负载能力。如某设备能供出100KVA的视在功率,若功率因数为
0.7,则只能供出70KW的有功功率了;若功率因数为0.9,则能供出90KW的有功功率,可见提高功率因数很有意义。

2)输电线路由于无功电流存在,增加了输电线路损耗。例如功率因数为0.7,要供出70KW的有功功率,则需要供出
100KVA的视在功率,输电线路的电流增大,线路损耗必然增大。

功率因数补偿方法

供电部门供的电能是以“视在功率”来计算的,但是收电费却是以“有功功率”来计算的,用户的“电度表”实为“有功功率表”,两者之间有一个“功率因数”折扣,所以功率因数是供电部门非常在意的一个数据。用户如果没有达到理想的功率因数,相对地就是在消耗供电部门的资源。目前就国内而言功率因数规定是必须介于电感性的0.9~1之间。
可采取以下方式进行功率因数补偿:

1)半集中、集中补偿法,要求用电企业的各个配电房必须安装功率因数自控装置,实时检测功率因数大小,自动投入或切除补偿电力电容器的个数,用于电动机运行补偿(因企业主要用电负荷是电动机),做到局部用电网络功率因数达标。这个办法从上世纪七十年代末、八十年代初便已强制实施,至今少说已有二十多年。还有各个供电所也安装功率因数自控装置,对其下辖供电区域进一步补偿。

2)分散补偿法,要求每个用电器具设计时便采用先进技术,满足功率因数达标,这样不论何时何地用电均能保证功率因数达标。但这样做会增加成本、增加电器体积,而有的电器对体积大小限制很严格,加大了设计难度。
电光源照明灯具与功率因数补偿的回顾电光源是由白炽灯泡开始的,白炽灯泡是纯电阻负载,没有功率因数补偿的问题。上世纪50年代后,日光灯迅速普及成了主要的照明灯具,镇流器用的是硅钢片电感,可靠性高,寿命长,至今仍有少量采用的,大多数没有什么功率因数补偿措施,可能是受到成本因素的影响,抑或人们对功率因数补偿不甚了解,节能意识不强。也有加接适当容量的电容器作功率因数补偿的,多用在30W、40W大瓦数日光灯
上,20W以下很少用。上世纪90年代后,人们的环保、节能意识增强,开发出三基色萤光粉节能灯,其光功效更高。电子镇流器也随后问世,配上三基色萤光粉灯管,节能效果更加显著。国内外一些集成电路厂商推出了带有源功率因数补偿的灯用芯片,用于电子镇流器,性能优秀,但增加了成本和电子镇流器体积,老百姓还不能接受它的价格,大约只用在高端灯具产品上。大量的普及型电子镇流器包括用于节能灯的都没有加什么功率因数补偿措施,这在市面流行的节能灯、日光灯上随处可见。也就是说以往的灯具基本上没有什么功率因数补偿措施,但大家都在用。

功率因数与LED照明

LED耗电更省,灯具功率比起节能灯还要小。LED照明当然更为进步,对环境保护、节能减排更为适宜。LED灯具是否加功率因数补偿,笔者的看法是:
1)据专家分析,LED为容性负载。电网的感性负载甚多,例如电动机、变压器等等。往往需要接入容性负载进
行补偿,功率因数自控装置就是作此用途的。LED为容性负载,恰恰补偿了电网因感性负载多导致功率因数低的问题,正是用得其所。源于这种认识,笔者认为LED照明灯具原则上无需加功率因数补偿措施。

2)室内照明用的单盏LED灯具均是小功率的,功率不会超过30W。灯具功率小对电网的影响也小,笔者认为这类
灯具完全可以免去功率因数补偿措施,加了反而不好,反而会失去LED灯具是容性负载能够补偿电网因感性负载多导致功率因数低的功能。这些小功率灯具多是小体积紧凑型的,内部空间十分有限,例如MR16、PAR30、PAR38灯杯,电源PCB板增大后放不下,就是好心想加功率因数补偿措施也加不进。还有加了功率因数补偿后会带来效率下降的副作用,或云得不偿失。再则成本增加影响销售。何况供电部门已采取了应对措施对电网功率因数进行补偿,灯具厂家大可不必再去画蛇添足。

3)功率100W以上的可以考虑加功率因数补偿措施,功率大的负载对电网的影响也大,例如一百瓦到数百瓦的LED
路灯。路灯属于公益事业,成本略增加一点无大碍,电源PCB板增大一点也有位置可放。加功率因数补偿措施可以帮助供电部门减轻一些调节负担,防止容性负载过大产生过度补偿。

关键字:LED照明  功率因数 编辑:冰封 引用地址:LED照明与功率因数关系解析

上一篇:电量计在手持设备中的实现
下一篇:交错式PFC的优势及解决方案

推荐阅读最新更新时间:2023-10-18 16:18

工程师详析:高功率LED照明灯具的光学设计
  传统照明光源大多使用灯与白炽灯泡,基本大型照明灯具非常强调配光的控制性,单纯考虑发光效率的场合,荧光灯与高强度气体放电灯(HID: High Intensity Discharge)非常优秀,不过高强度气体放电灯的电气调光范围却很狭窄。相较之下荧光灯的光学系统照射特定领域时,若与卤素灯的钨丝比较,它的发光部位非常大,无法高效率从光源收敛光线。   此外大型照明灯具要求0~100%柔顺的调光,一般都使用晶闸管(Thyristor)以点弧位相角控制方式,改变灯泡的驱动电压实现调光效果,因此大型照明灯具的光源几乎都使用卤素灯。大型照明灯具并不要求均匀照射物体,通常都是依照需求使用复数明用灯具,改变照射方向与照射范围,因此大型照
[电源管理]
工程师详析:高功率<font color='red'>LED照明</font>灯具的光学设计
LED驱动器的主动式热能管理介绍
  LED光源为照明产业的大势所趋,惟整体发光效率仍未达市场要求,其中,散热缺陷为首要解决的棘手课题,目前产业界已发展出利用LED驱动器的主动式热能管理,其藉由内建热能回折功能,以改善LED在使用年限与散热的发展窒碍。   在2007年,美国能源部能源情报署(EIA)发表一篇报告,在该篇报告中特别提到美国(在商业区与住宅)的照明设备总共约消耗5,260亿千瓦小时的电能。若参考2008年EIA的报告,可发现美国一座核能发电厂能产生124亿千瓦小时的电能。因此,透过简单的计算可知,美国光在照明设备的使用即须耗掉四十二座核能发电厂的电能。随着人口数量的逐渐成长,照明工业必须寻找新型态的照明光源,以提高照明效率与降低能量消耗。
[电源管理]
LED驱动器的主动式热能管理介绍
专家教你如何选取LED照明驱动芯片
  LED照明灯具在近期得到飞跃的发展,LED作为绿色环保的清洁光源得到广泛的认可。LED光源使用寿命长、节能省电、应用简单方便、使用成本低,因而在家庭照明都将得到海量的应用,欧司朗光学半导体公司2008年调查统计,全球每年家庭照明灯座出货量约为500亿个。   LED光源的技术日趋成熟,每瓦发光流明迅速增长,促使其逐年递减降价。以1W LED光源为例,2008年春的价格已是2006年春的价格三分之一,2009年春将降至2006年的四分之一。   LED绿色灯具的海量市场和持续稳定数年增长需求将是集成电路行业继VCD、DVD、手机、MP3之后的消费电子市场的超级海啸!   LED灯具的高节能、长寿命、利环保的优越性能获得普遍的公认
[电源管理]
专家教你如何选取<font color='red'>LED照明</font>驱动芯片
两岸LED业者攻克大功率LED照明散热难关
随着 LED照明 的需求日趋迫切,高 功率 LED 的散热问题益发受到重视,因为过高的温度会导致LED发 光效 率衰减;LED运作所产生的废热若无法有效散出,则会直接对LED的寿命造成致命性的影响,因此,近年来高功率 LED散热 问题的解决成为许多相关业者的研发标的。 对于大功率照明LED散热技术,各家公司可说是各显神通,例如台湾的光海科技便发展出‘COHS封装散热技术’,光海科技是利用本身载板设计能力的优势,将LED直接封装在高导热性的铜基座上,铜的高导热性就如同散热器的角色,再加上以电路设计及自有工艺克服绝缘膜与铜材质间的附着性问题,便发展出所谓的COHS技术(Chips On Heat Sink),并已
[电源管理]
两岸LED业者攻克大功率<font color='red'>LED照明</font>散热难关
Fairchild简化了宽范围可调光LED照明设计
独特的有源调光器驱动技术帮助设计师采用单个器件即可满足宽功率范围应用。 美国加州圣何塞 2015年2月5 日 致力于让世界变得更洁净、更智能的全球顶尖高性能功率半导体解决方案供应商Fairchild (NASDAQ: FCS)今天推出了FL7734相切可调光单级LED驱动器,这款高度集成的LED控制器解决方案用于5 W至30 W的低成本、高可靠性LED照明解决方案。 FL7734能够帮助设计者迅速实现卓越的照明质量设计和调光器高度兼容性,同时集成功率因数校正(PFC)电路,用以满足功率因数(PF)和谐波失真(THD)要求。 FL7734解决方案采用Fairchild独特的有
[电源管理]
Fairchild简化了宽范围可调光<font color='red'>LED照明</font>设计
LED灯泡拆解:究竟用了怎样的LED驱动?
LED灯泡的价格正在下降。一年前,你可能要花50美元购买相当于60W的飞利浦可调光式LED灯,而现在去百思买购买一个8W、800流明,相当于60W的自有品牌Insignia灯,只要17美元。LED灯泡设计究竟有哪些变化推动了价格的下降?拆解让我们能够一窥LED照明的设计趋势,例如LED在灯泡内如何放置的,以及采用了什么驱动器架构。 Insignia球形灯的外观和节能灯类似,增加了三个金属散热片,并且用塑料灯球替代了玻璃灯球(图1)。 灯泡的调光功能对美国市场来说是个相当重要的功能。我用过Lutron Maestro调光开关,配备了可编程的调光控制,并且和节能灯做了逐项的对比。Insignia调光一致且平滑,调光也类似于节能灯。
[电源管理]
LED灯泡拆解:究竟用了怎样的LED驱动?
LED照明渠道模式剖析和建议
一、 雷士模式(运营中心 + 密集性分销 + 隐性渠道模式):与雷士相近戓模仿雷士的企业包括:三雄极光、西顿、品上、嘉美、吉豪等 1. 特点与优点:   ※运营中心实力强大,区域市场运营能力突出   ※网点质量高,单店产出大 ※产品线丰富,性价比高   ※工程投标政策灵活   ※工程领域影响力大   ※消费者口碑明显   ※资本实力充裕   2. 缺点   ※公司可控性差,若某一客户做不好,给市场带来大面积的影响。   ※以流通、分销业务为主,无法为高端客户提供更多增值服务,客户忠诚度不高。   ※管理体系混乱,人治色彩较浓厚   ※应收帐款较多,财务风险较大
[电源管理]
<font color='red'>LED照明</font>渠道模式剖析和建议
安森美半导体分享LED照明设计基础知识
发光二极管(LED)继在中小尺寸屏幕的便携产品背光等应用获大量采用后,随着它发光性能的进一步提升及成本的优化,近年来已迈入通用照明领域,如建筑物照明、街道照明、景观照明、标识牌、信号灯、以及住宅内的照明等,应用可谓方兴未艾。 另一方面,LED照明设计也给包括中国工程师在内的工程社群带来了挑战,这不仅因为LED照明的应用范围非常广泛,应用的功率等级、可以采用的驱动电源种类及电源拓扑结构等,也各不相同。工程师们迫切需要系统地学习及了解更多有关LED照明设计的基础知识。有鉴于此,安森美半导体的产品应用总监Bernie Weir先生近期专门撰写相关培训资料,为工程师们传授相关的设计基础知识,内容涉及LED驱动器的通用要求
[电源管理]
安森美半导体分享<font color='red'>LED照明</font>设计基础知识
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved