基于电感开关电源的功率开关功耗

最新更新时间:2012-01-07来源: 互联网关键字:电感  开关电源  功率开关功耗 手机看文章 扫描二维码
随时随地手机看文章

 基于电感的开关电源(SM-PS)包含一个功率开关,用于控制输入电源流经电感的电流。大多数开关电源设计选择MOSFET作开关(图1a中Q1),其主要优点是MOSFET在导通状态具有相对较低的功耗。

    MOSFET完全打开时的导通电阻(RDS(ON))是一个关键指标,因为MOSFET的功耗随导通电阻变化很大。开关完全打开时,MOSFET的功耗为ID2与RDS(ON)的乘积。如果RDS(ON)为0.02W,ID为1A,则MOSFET功耗为0.02*12=0.02W。功率MOSFET的另一功耗源是栅极电容的充放电。这种损耗在高开关频率下非常明显,而在稳态(MOSFET连续导通)情况下,MOSFET栅极阻抗极高,典型的栅极电流在纳安级,因此,这时栅极电容引起的功耗则微不足道。转换效率是SMPS的重要指标,须选择尽可能低的RDS(ON)。MOSFET制造商也在坚持不懈地开发低导通电阻的MOSFET,以满足这一需求。

    随着蜂窝电话、PDA及其他电子设备的体积要求越来越小,对电子器件,包括电感、电容、MOSFET等的尺寸要求也更加苛刻。减小SMPS体积的通用方法是提高它的开关频率,开关频率高容许使用更小的电感、电容,使外部元件尺寸最小。

    不幸的是,提高SMPS的开关频率会降低转换效率,即使MOSFET的导通电阻非常小。工作在高开关频率时,MOSFET的动态特性,如栅极充放电和开关时间变得更重要。可以看到在较高的开关频率时,高导通电阻的MOSFET反而可以提高SMPS的效率。为了理解这个现象就不能只看MOSFET的导通电阻。下面讨论了N沟道增强型MOSFET的情况,其它类型的MOSFET具有相同结果。

图1. 一个典型的升压转换器(a)利用MOSFET控制流经电感至地。

    当沟道完全打开,沟道电阻(RDS(ON))降到最低;如果降低栅极电压,沟道电阻则升高,直到几乎没有电流通过漏极、源极,这时MOSFET处于断开状态。可以预见,沟道的体积愈大,导通电阻愈小。同时,较大的沟道也需要较大的控制栅极。由于栅极类似于电容,较大的栅极其电容也较大,这就需要更多的电荷来开关MOSFET。同时,较大的沟道也需要更多的时间使MOSFET打开或关闭。工作在高开关频率时,这些特性对转换效率的下降有重要影响。

    在低开关频率或低功率下,对SMPS MOSFET的功率损耗起决定作用的是RDS(ON),其它非理想参数的影响通常很小,可忽略不计。而在高开关频率下,这些动态特性将受到更多关注,因为这种情况下它们是影响开关损耗的主要原因。

    MOSFET栅极类似于电容极板,对栅极提供一个正电压可以提高沟道的场强,产生低导通电阻路径,提高沟道中的带电粒子的流通。

    对SMPS的栅极电容充电将消耗一定的功率,断开MOSFET时,这些能量通常被消耗到地上。这样,除了消耗在MOSFET导通电阻的功率外,SMPS的每一开关周期都消耗功率。显然,在给定时间内栅极电容充放电的次数随开关频率而升高,功耗也随之增大。开关频率非常高时,开关损耗会超过MOSFET导通电阻的损耗。

    随着开关频率的升高,MOSFET的另一显著功耗与MOSFET打开、关闭的过渡时间有关。在功率损耗曲线下方,开关转换期间的功耗比MOSFET导通时的损耗大。由此可见,功率损耗主要发生在开关状态转换时,而不是MOSFET开通时。

    MOSFET的导通和关断需要一定的过渡时间,以对沟道充电,产生电流或对沟道放电,关断电流。MOSFET参数表中,这些参数称为导通上升时间和关断下降时间。对指定系列中,低导通电阻MOSFET对应的开启、关断时间相对要长。当MOSFET开启、关闭时,沟道同时加有漏极到源极的电压和导通电流,其乘积等于功率损耗。三个基本功率是:

    P = I*E

    P = I2*R

    P = E2/R

    对上述公式积分得到功耗,可以对不同的开关频率下的功率损耗进行评估。

    MOSFET的开启和关闭的时间是常数,当占空比不变而开关频率升高时,状态转换的时间相应增加,导致总功耗增加。例如,考虑一个SMPS工作在50%占空比500kHz,如果开启时间和关闭时间各为0.1祍,那么导通时间和断开时间各为0.4祍。如果开关频率提高到1MHz,开启时间和关闭时间仍为0.1祍,导通时间和断开时间则为0.15祍。这样,用于状态转换的时间比实际导通、断开的时间还要长。

    可以用一阶近似更好地估计MOSFET的功耗,MOSFET栅极的充放电功耗的一阶近似公式是:

    EGATE = QGATE×VGS,

    QGATE是栅极电荷, VGS是栅源电压。

    在升压变换器中,从开启到关闭、从关闭到开启过程中产生的功耗可以近似为:

    ET = (abs[VOUT - VIN]×ISW×t)/2

    其中ISW是通过MOSFET的平均电流(典型值为0.5IPK),t是MOSFET参数表给出的开启、关闭时间。

    MOSFET完全导通时的功耗(传导损耗)可近似为:

    ECON = (ISW)2 ×RON×tON,

    其中RON是参数表中给出的导通电阻,tON是完全导通时间(tON= 1/2f,假设最坏情况50%占空比)。 
考虑一个典型的A厂商的MOSFET:

    RDSON = 69mW

    QGATE = 3.25nC

    tRising = 9ns

    tFalling = 12ns

  一个升压变换器参数如下:

    VIN = 5V

    VOUT = 12V

    ISW = 0.5A

    VGS = 4.5V

    100kHz开关频率下每周期的功率损耗如下:

    EGATE = 3.25nC×4.5V = 14.6nJ

    ET(rising) = ((12V - 5V)×0.5A×9ns)/2 = 17.75nJ

    ET(falling) = ((12V - 5V)×0.5A ×12ns)/2 = 21nJ

    ECON = (0.5)2 ×69mW×1/(2× 100kHz) = 86.25nJ.

    从结果可以看到,100kHz时导通电阻的损耗占主要部分,但在1MHz时结果完全不同。栅极和开启关闭的转换损耗保持不变,每周期的传导损耗以十分之一的倍率下降到8.625nJ,从每周期的主要功耗转为最小项。每周期损耗在62nJ,频率升高10倍,总MOSFET功率损耗增加了4.4倍。

    另外一款MOSFET:

    RDSON = 300mW

    QGATE = 0.76nC

    TRising = 7ns

    TFalling = 2.5ns.

    SMPS的工作参数如下:

    EGATE = 0.76nC×4.5V = 3.4nJ

    ET(rising) = ((12V - 5V)×0.5A×7ns)/2 = 12.25nJ

    ET(falling) = ((12V - 5V)×0.5A×2.5ns)/2 = 4.3nJ

    ECON = (0.5)2 ×300mW×1/(2× 1MHz) = 37.5nJ.

    导通电阻的损耗仍然占主要地位,但是每周的总功耗仅57.45nJ。这就是说,高RDSON(超过4倍)的MOSFET使总功耗减少了7%以上。如上所述,可以通过选择导通电阻及其它MOSFET参数来提高SMPS的效率。

    到目前为止,对低导通电阻MOSFET的需求并没有改变。大功率的SMPS倾向于使用低开关频率,所以MOSFET的低导通电阻对提高效率非常关键。但对便携设备,需要使用小体积的SMPS,此时的SMPS工作在较高的开关频率,可以用更小的电感和电容。延长电池寿命必须提高SMPS效率,在高开关频率下,低导通电阻MOSFET未必是最佳选择,需要在导通电阻、栅极电荷、栅极上升/下降时间等参数上进行折中考虑。■


关键字:电感  开关电源  功率开关功耗 编辑:冰封 引用地址:基于电感开关电源的功率开关功耗

上一篇:智能高频开关电源的整流模块的设计方案
下一篇:用直流或直、交流叠加电源的硬质阳极氧化处理技术要求

推荐阅读最新更新时间:2023-10-18 16:18

基于PIC单片机的点型光电感烟探测器设计
火灾是人类面临的最大威胁之一,火灾探测对防御火灾具有举足轻重的作用。光电感烟探测器是目前消防中使用的主要探测器之一。光电感烟探测器分为两大类:其中“线型光电感烟”是利用烟雾对光束能量的衰减原理制成的光电感烟探测器,该探测器正常工作需要比较长的空间距离,所以称之为“线型”,否则,烟雾对光束能量的衰减太小不能获取足够的报警信息;“点型光电感烟”是利用烟雾对光束的散射原理制作的光电感烟探测器,该探测器总体积不超过10×10×10cm,所以称之为“点型”。本文主要介绍基于PIC16F676单片机的点型光电感烟探测器的设计方法。 1 点型光电感烟原理   点型光电感烟探测器是“主动”式探测器,其工作原理见图1。没有烟雾时,由于光学
[单片机]
基于PIC单片机的点型光<font color='red'>电感</font>烟探测器设计
一种基于全桥式变压器开关电源的电路设计应用
全桥式变压器开关电源的工作原理 全桥式 变压器 开关电源 工作原理与推挽式变压器开关电源以及半桥式变压器开关电源的工作原理是很相似的,我下面先来了解全桥式变压器开关电源工作原理。如下图 1所示是全桥式变压器开关电源工作原理图。图中,K1、K2、K3、K4是4个控制开关,它们被分成两组;K1和K4为一组,K2和K3为另一组。开关电源工作的时候,总是一组接通,另一组关断,两组控制开关轮流交替工作;T为开关变压器,N1为变压器的初级线圈,N2为变压器的次级线圈;Ui为直流输入电压,R为负载电阻;uo为输出电压,io为流过负载的电流。 从上面的原理图中可以看出,控制开关K1和K4与控制开关K2和K3正好组成一个电桥的两臂,变压器作
[电源管理]
一种基于全桥式变压器<font color='red'>开关电源</font>的电路设计应用
用于超声波管道清洗机的开关电源设计
  引言   应用“空化效应”除垢防垢机理的一种新型的高声强度高可靠超声波管道清洗机已经问世,并在石油、化工、冶金或制药等领域获得了应用。而超声波管道清洗机主要由高频高压大功率的超声波发生器和能将电能转化为机械能的管道式高声强换能器组成。从图1所示可以看出,高声强度超声波管道清洗机主要由高频高压大功率电信号的超声波发生器(或称信号源)、传输电缆、管道式高声强压电换能器组成,换能器放置于管道内。   图1 超声波管道除垢清洗机   实践证明,该换能器技术比赛成熟,,其主要指标能得到保证,而要确保超声波管道清洗机高可靠高声强特性的关键是超声波发生器。为什么这么说呢?因为分立式高频高压大功率开关电源
[电源管理]
用于超声波管道清洗机的<font color='red'>开关电源</font>设计
叠层型功率电感助力模块电源
      前言       随着移动设备的多功能化,其电源电路的工作电压也变得多样化。具体来说,以典型的手机为例,除了原始的通话功能之外,相机、广播、电视等各种功能已经成为普遍标准的功能。这些功能的工作所需的电压各不相同,为此,电池电压必须通过电源转换电路将其电压转换成各电路正常工作所需电压。大多采用电源转换效率较高的开关控制器(通常称作DC-DC转换器)。       另外,在移动设备多功能化进程中,对机器的小型、薄型化要求也逐步提升。为此就必须减少元件的使用数量,或者将元件做到更小。此对策是借由提高DC-DC转换器的开关频率,减小必要的功率电感和电容的额定参数值,以此来适应元件的小型化。将集中控制电源的PMIC(Po
[电源管理]
叠层型<font color='red'>功率</font><font color='red'>电感</font>助力模块电源
详解开关电源的几种常用软启动电路
  开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。本文介绍了几种常用的软启动电路。      图1 合闸瞬间滤波电容电流波形    (1)采用功率热敏电阻电路   热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的
[电源管理]
详解<font color='red'>开关电源</font>的几种常用软启动电路
低电磁骚扰开关电源设计技巧
  电源装置是电子电气设备中所不可缺少的部件,开关电源以其效率高、体积小、重量轻、电压适应性好等优点,受到相关行业的青睐。但目前存在的缺陷是电磁骚扰大,对环境或对其他设备造成不利影响。目前对于可变负载的开关电源,笔者所了解到的产品最低输出噪声电压也在70 mV以上。设计低电磁骚扰的开关电源,也就成了许多设计人员的希望,为此提出了种种方法。本例设计要点不同于常规技术,而是采取了从源头上对电磁噪声进行消除,再结合一些常规措施。将电源输出端口的噪声电压降至20 mV以下,显著提高开关电源的电磁兼容性指标。    1 开关电源电路结构与降噪原理   该开关电源的设计目标是稳定20 V输出,输出电流0~2 A可变,用于音响系统。为了
[电源管理]
低电磁骚扰<font color='red'>开关电源</font>设计技巧
LM5021型开关电源控制器的原理与应用
    1 LM5021的引脚功能   LM5021采用SOP-8和DIP-8封装,引脚排列如图1所示,各个引脚的功能如下:   COMP:PWM控制输入端,COMP端内部接一只5kQ电阻器上拉到5V电源。由输出反馈电压经光耦隔离后控制。   VIN:内部偏置电路输入端,该端输入电压达到阈值后启动内部调节器。该引脚被内部齐纳二极管箝位在36V。    VCC:内部偏置电路输出端。该端与GND之间必须接1只电容器。其输出电压通常为8.5V。   OUT:PWM控制输出端。该端接:MOSFET的驱动极。   GND:公共地。
[电源管理]
一种双晶体管正激有源钳位软开关电源的设计
引言 现在世界资源短缺,各国政府及社会各界越来越要求节能降耗。中国政府也正秉持这一国际化趋势的理念在不断迈进,这一趋势在未来几年还会加速,这势必为响应这一国际趋势的科技型企业带来巨大的机遇。同时对技术薄弱的电源企业就是一个巨大的考验。在电源行业来讲,这几年大家一直致力于80PLUS的产品研发,时至今日,这项技术在大的企业已经得到普及。接下来的方向就是如何来达到85PLUS的要求。这对于一般的适配器或高电压直流输出的电源来讲没有什么问题,大家很容易就可以实现。但是对于一般的PC电源或服务器电源这种带多输出中低直流电压的电源来讲,要达到85PLUS就不这么容易了。   电源目前常见的几种可以实现高效率的电路拓扑来讲,单晶体管有源钳位技
[电源管理]
一种双晶体管正激有源钳位软<font color='red'>开关电源</font>的设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved