一种双晶体管正激有源钳位软开关电源的设计

最新更新时间:2014-02-23来源: 互联网关键字:双晶体管  有源钳位  软开关电源 手机看文章 扫描二维码
随时随地手机看文章
引言

现在世界资源短缺,各国政府及社会各界越来越要求节能降耗。中国政府也正秉持这一国际化趋势的理念在不断迈进,这一趋势在未来几年还会加速,这势必为响应这一国际趋势的科技型企业带来巨大的机遇。同时对技术薄弱的电源企业就是一个巨大的考验。在电源行业来讲,这几年大家一直致力于80PLUS的产品研发,时至今日,这项技术在大的企业已经得到普及。接下来的方向就是如何来达到85PLUS的要求。这对于一般的适配器或高电压直流输出的电源来讲没有什么问题,大家很容易就可以实现。但是对于一般的PC电源或服务器电源这种带多输出中低直流电压的电源来讲,要达到85PLUS就不这么容易了。

 

电源目前常见的几种可以实现高效率的电路拓扑来讲,单晶体管有源钳位技术现在有很多厂商推广,但是目前使用情况还是不太普及,全桥零电压开关的技术也有人使用,也同样没有得到广泛普及。现今在大的电源使用上大家最常用的就是双晶体管正激,目前很多厂商从300W~1200W的范围都有使用,同时可以满足80PLUS的要求,但是目前要作到85PLUS就很难,不进行一些技术变更几乎不可能。基于目前的情况,本文介绍一种利用有源钳位技术在双晶体管正激上实现软开关的设计方法,并给出实际的设计案例及实验结果。

双晶体管正激有源钳位软开关的工作原理

双晶体管正激有源钳位软开关主电路如图1所示。

参阅图2至图7,详细讲述双晶正激有源钳位开关电源的工作过程如下:


1)功率传输阶段(t0~t1),如图2所示,该阶段第一主开关管VT1和第二主开关管VT2同时导通,而钳位开关管VTR1处于关断状态。加在变压器上的输入电压使励磁电流线性上升,初级向次级经变压器传输能量。次级VD1导通,VD2截止,L1上的电流线性上升,整流滤波后供给负载RL.在此条件下VD1和VD2刚好ZVS下导通,因其体二极管先前已经在导通状态(如图6所示)

2)谐振阶段(t1~t2),如图3所示,在占空比的控制下,第一主开关管VT1和第二主开关管VT2在t1时刻同时关断,变压器磁芯极性反转。因输入电源和变压器的励磁电感的作用给VT1和VT2的寄生电容COSS1,COSS2充电,由于电容电压不能突变,第一主开关管VT1和第二主开关管VT2在ZVS状态下关断。同时变压器的励磁电流开始给钳位开关管VTR1的寄生电容COSS放电,经VTR1的体二极管给钳位电容CR1充电。次级VD1截止,VD2导通,L1经过VD2续流继续给负载RL供电。


3)有源钳位阶段(t2~t3),如图4和图5所示,在亡2时刻钳位开关管VTR在ZVS状态下开启,由于VTR1的体二极管先前已开通,VTRl的UDS电压很低。钳位开关管VTR1在整个阶段处于开通状态,变压器励磁电流经过钳位开关管VTR1继续给钳位电容CR1充电,钳位电容CR1充满以后经变压器励磁电感放电。次级在整个阶段由L1续流经VD2给负载供电,VD1截止。

本文介绍的双晶体管正激有源钳位开关电源同时拥有单晶正激有源钳位和双晶正激两者的优点,适合于高压中大功率应用,并且磁芯得到有效的复位,磁芯利用率得到提高,占空比可以超过0.5,甚至可以达到0.7.如果输入电压为380V,占空比在0.7时,主开关管反压也才634V左右,在高电压应用中有较大的好处,做到了零电压开关,效率比双晶正激有较大的提高,同时也减少了EMI的干扰。而次级波形无死区时间,适合采用自驱动同步整流,对低电压大功率输出有很大的好处,频率也可以相应的提高,可节省磁芯材料,减小体积,初次级开关管的电压应力也相应减小。


双晶正激有源钳位软开关电源还有另一种结构,如图8所示。其结构与图1所示的双晶正激有源钳位软开关电源基本相似,只钳位开关管VTR3以及钳位电容CR3设置在副边,钳位电容CR3一端与变压器的同名端相连,另一端与钳位开关管VTR3的D极相连,钳位开关管VTR3的S极与变压器的异名端相连,请参阅图8.其工作原理同在初级钳位相差不多,这里不再讲述。

实际波形结果

我们实际用一般双晶体管正激的产品经过改进,将其调整为上述的有源钳位方式,其实际的双晶体管工作波形如图9~图12所示。


从以上实际的波形来看,两个晶体管的UDS电压比原来的硬开关低了不少,有利于设计中选择MOSFET开关管,同时选择一样规格的材料其电压余量提高不少,增加了产品可靠度。另外从图中我们很明显的可以看出在MOSFET的导通与关断基本是零电压导通与关断,降低了开关损耗。同时对电磁兼容也有很大的好处。

从图13可以看到正向电压39V,负向电压26V,占空比为0.42.所以次级整流部分的组件耐压可以比原本的规格降下来很多,这对效率提升有很大的好处。

结束语

本文介绍的线路目前已经在实际运用中得到验证,它充分体现了文中讲述的几个优点,对于材料选用余量,产品效率提升起到了很大的好处。运用这个线路做的大功率服务器电源1000W实例目前不仅满足了80PLUS银牌的标准,再在二次输出整流及材料选择上稍加改善,完全可以达到金牌的标准。所以此线路可让广大电源设计者在线路选择上多一个有益的方案。

关键字:双晶体管  有源钳位  软开关电源 编辑:探路者 引用地址:一种双晶体管正激有源钳位软开关电源的设计

上一篇:基于VIPER26LD的隔离反激AC/DC电源参考设计
下一篇:详解运放及其补偿技术

推荐阅读最新更新时间:2023-10-12 22:35

解析PRT自激励振方式VRC软开关变换电源技术
在开关变换电源电路中,将谐振型变换开关元件的励振、驱动方法定义为两类,即把设置有专用的励振和驱动电路方式叫作它激励振、驱动;把利用变压器反馈电路实现的励振、驱动方式叫作自激励振、驱动。这里阐述利用正交型变压器PRT反馈电路构成的自激励振方式电压谐振型软开关变换电源技术。    1 正交型变压器的控制技术   对于自激励振方式谐振型变换器的控制技术,尤其重要的是采用各种铁氧体磁心的正交型变压器PRT。图1是PRT构造和电感特性及电路图形符号。其中,图1(a)为旧单口型铁氧体磁心PRT;图1(b)为新双口型铁氧体磁心PRT;图1 (c)为PRT电路符号。比较它们的形状和电感特性后得知,新双口型PRT的磁路长度比旧单口型的磁路长
[电源管理]
解析PRT自激励振方式VRC<font color='red'>软开关</font>变换<font color='red'>电源</font>技术
软开关PFC电路的倍频感应电源的设计仿真
0 引言   Boost电路应用到功率因数校正方面已经较为成熟,对于几百瓦小功率的功率因数校正,常规的电路是可以实现的。但是对于大功率诸如感应加热电源,还存在很多的实际问题。为了解决开关器件由于二极管反向恢复时产生的冲击电流而易损坏的情况,减少开关器件在高频下的开关损耗。 本文采用一种无源无损缓冲电路取代传统的LC滤波电路。在分析了软开关电路的工作原理以及逆变模块的分时-移相功率控制策略后,应用Matlab软件进行了仿真,并通过实验结果验证了理论分析的正确性。    1 电源系统整体拓扑   如图1所示,该主电路拓扑主要由整流、软开关Boost功率因数校正、逆变、负载匹配几个环节组成。   
[电源管理]
<font color='red'>软开关</font>PFC电路的倍频感应<font color='red'>电源</font>的设计仿真
100kHz/1000W高效全桥软开关稳压电源的试验数据与实测波形
    摘要: 用国产优质PQ50/50和四只低栅荷IRFP460LC、UC3875等,并在滞后臂增加辅助谐振网络,可制成廉价高效93.5%的100kHz、1000W移相控制ZVS全桥软开关电源。     关键词: 全桥软开关电源  移相控制零电压开关  国产优质铁氧体  低栅荷MOSFET 实用的100kHz、1000W移相控制ZVS全桥软开关电源IC控制系统UC3875与外围电路见图1,驱动电路及RM8Z变压器绕组实际参数见图2,该稳压电源的主功率变换器在断开+300V漏极电压、无反馈条件下实测控制板驱动电路输入脉冲波形(超前、滞后臂两组)见图3。 图3给出了在低压条件下(高压开关管断开+300V不
[电源管理]
Maxim推出有源钳位、电流模式PWM控制器
Maxim推出采用有源钳位架构和扩频工作方式的高频、电流模式PWM控制器MAX5974。器件的有源钳位架构能够提供大于90%的效率,有效降低用于IEEE® 802.3af/at用电设备(PD)的同步正向/反激式电源的功耗。MAX5974A/MAX5974C非常适合通用整流离线式(85V至265V)或电信(36V至72V)输入电压。MAX5974B/MAX5974D还可接受低至10.5V的输入电压(例如:墙上适配器)。器件的目标应用包括IP电话、IP摄像机和无线LAN接入点等PoE PD。MAX5974还适用于通用和电信输入电压范围。 MAX5974A/MAX5974B具有内部采样保持误差放大器,通过耦合
[模拟电子]
Maxim推出<font color='red'>有源钳位</font>、电流模式PWM控制器
安森美扩展高能效、低 Vce(sat) 极结晶体管系列,多种封装选择
全新 PNP 与 NPN器件针对便携式电子应用实现更高的能效及更长的电池使用寿命 2007 年 7 月6日 - 全球领先的电源管理半导体解决方案供应商安森美半导体 (ON Semiconductor,美国纳斯达克上市代号:ONNN)推出采用先进硅技术的 PNP 与 NPN 器件,丰富了其业界领先的低 Vce(sat) 双极结晶体管 (BJT) 产品系列。这两种新型晶体管与传统的 BJT 或平面 MOSFET相比,不仅实现了能效的最大化,而且还延长了电池的使用寿命。最新的低 Vce(sat) BJT 包括WDFN、SOT-23、SOT-223、SOT-563、ChipFET 及 SC-88等多种封装形式,非常适用于多种便携式
[新品]
大功率高频电镀电源软开关技术分析
目前电镀电源应用越来越广,人们对其品质要求也越来越高。随着半导体技术的进步,电镀电源逐渐向高频高效化、大功率化发展,使得电镀电源具有更高的功率密度、快速的响应能力以及更小的体积。但常规PWM变换技术是一种硬开关模式,开关损耗大、器件温度过高等严重制约了开关电源工作频率的提高,已经无法满足要求。软开关技术具有降低电力电子器件开关功耗、提高开关频率、降低电磁干扰、改善器件的工作环境等优点,是近10年来国际电力电子领域研究的热点。因而,采用 软开关 技术研究大功率高频软开关电镀电源是电镀工艺发展的必然。    1 大功率电镀电源软开关技术的分类   大功率高频 电镀电源 实际上是一种低压大电流的整流装置。通常采用PWM DC—D
[电源管理]
大功率高频电镀<font color='red'>电源</font>的<font color='red'>软开关</font>技术分析
数字控制全桥软开关电源的Saber仿真分析
数字化是开关电源的发展趋势,它可以实现快速、灵活的控制设计,改善电路的瞬态响应性能,使之速度更快、精度更高,可靠性更强。因此,本文基于Saber仿真软件对采用数字控制的大功率移相控制全桥ZVS电源系统( 12 V /5 000 A)进行了建模、仿真,并对仿真结果进行了分析。 1 主电路的建模 移相控制全桥ZVS2PWM变换器电路实现简单、工作可靠,而且充分利用了器件的寄生参数,不需要加入辅助电路,比较适合大功率低压大电流的应用场合,其主电路结构如图1所示。 图1 移相控制全桥ZVS2PWM电源系统主电路 Saber软件提供了功率器件建模工具Model Ar2chitect,如图2所示为该工具提供的IGBT等效电路模型,根据实际器
[电源管理]
数字控制全桥<font color='red'>软开关</font><font color='red'>电源</font>的Saber仿真分析
电源技术基础:有效减少开关损耗的“软开关”技术
  磁性元件的体积和重量在开关电源中占有很大比例,而开关电源的发展方向是体积小、重量轻和低成本,高频化可以有效的减小磁性元件的体积和重量,即开关器件的工作频率越高,其体积和重量越小。传统的DCOC变换器中,开关器件工作在硬开关状态。   硬开关的缺点如下:   (1)开通和关断过程损耗比较大;   (2)感性关断问题:   当电路中有感性器件时,开关器件关断时,会感应出很高的电压尖峰,极易损坏开关器件;   (3)容性开通问题:   当开关器件在高压下开通时,开关器件结电容中的能量将全部消耗在该器件上,从而易使该开关器件因为过热而损坏;   (4)二极管反向恢复问题:   二极管由导通变为截止时,有一个反向恢复时间,在此时间内,二
[电源管理]
<font color='red'>电源</font>技术基础:有效减少开关损耗的“<font color='red'>软开关</font>”技术
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved