锂电池充电保护IC原理

最新更新时间:2012-01-13来源: 互联网关键字:锂电池  充电保护  IC原理 手机看文章 扫描二维码
随时随地手机看文章

锂离子电池因能量密度高,使得难以确保电池的安全性。具体而言,在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而导致有发火或破裂的危机。反之,在过度放电状态下,电解液因分解导致电池特性劣化及耐久性劣化(即充电次数降低)。

 锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性的劣化。锂离子电池的保护电路是由保护IC、及两颗Power-MOSFET所构成。其中保护IC为监视电池电压;当有过度充电及放电状态时,则切换以外挂的Power-MOSFET来保护电池,保护IC的功能为: (1)过度充电保护、(2)过度放电保护、(3)过电流/短路保护。以下就这三项功能的保护动作加以说明

(1)   过度充电:

 当锂电池发生过度充电时,电池内电解质会被分解,使得温度上升并产生气体,使得压力上升而可能引起自燃或爆裂的危机,锂电池保护IC用意就是要防止过充电的情形发生。

 

过度充电保护IC原理:

当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状况,此时保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)及激活过充电保护,将Power MOS由ON'OFF,进而截止充电。另外,过充电检出,因噪声所产生的误动作也是必须要注意的,以免判定为过充保护,因此需要延迟时间的设定,而delay time也不能短于噪声的时间。 
 

 


(2)   过度放电:

  在过度放电的情形下,电解液因分解而导致电池特性劣化,并造成充电次数的降低,锂电池保护IC用以保护其过放电的状况发生, 达成保护动作。

过度放电保护IC原理:为了防止锂电池过度放电之状态,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假设设定为2.3V),将激活过放电保护,将Power MOS由ON'OFF,进而截止放电,达成保护以避免电池过放电现象发生, 并将电池保持在低静态电流的状态(standby mode),此时耗电为0.1uA 

 当锂电池接上充电器,且此时锂电池电压高于过放电电压时,过放电保护功能方可解除。 
 

 

另外,为了对于脉冲放电之情形,过放侦测设有延迟时间用以预防此种误动作的发生。

(3)   过电流及短路电流

 因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路电流发生,为确保安全,使其停止放电。 
电流保护IC原理:

当放电电流过大或短路情况发生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将Power MOS的Rds(on)当成感应阻抗用以监测其电压的下降情形,若比所定的过电流检测电压还高则停止放电,

公式为:

V-(过电流检测电压)=I(放电电流)*Rds(on)*2 

 假设V-=0.2V, Rds(on)=25mΩ,则保护电流的大小为I=4A

 

同样的,过电流检出也必须要设有延迟时间以防有突然的电流流入时,会发生误动作,使其发生保护的误动作。 通常在过电流发生后,若能移除过电流之因素(例如:马上与负载脱离..),就会回复其正常状态,可以再实行正常的充放电动作

锂电池保护IC的新功能:

除了上述的锂电池保护IC功能之外,现在还有一些新的功能值得我们注意,以东瑞电子所独家代理的"Ricoh"锂电池保护IC为例---R5426

(1)   充电时,过电流之保护: 

当连接充电器在充电时突然有过电流发生(充电器损坏),即发生充电时过电流检测,此时将Cout将由High'Low,Power MOS由ON'OFF,达成保护之动作。

V-(Vdet4过电流检测电压)=I(充电电流)*Rds(on)*2 

注:Vdet4为-0.1V

 (2)   缩短测试时间: 

假设测完一片PCB所需要花的时间为1秒,那100万片则需要100万秒,非常的耗时,同样的也很没有效率,故我们可以利用以下之功能来缩短测试时间。

 (A)  当我们将R5426之DS pin open时,此时delay time为规格书上所示

 (B)  当我们将R5426之DS pin接VDD时,此时delay time将只有1/90.

  (C)  当我们将R5426之DS pin接Vim(min=1.2V,max=VDD-1.1V),此时将可忽略delay time

(3)   过充时锁住模式(Latch): 

通常保护IC在过充电保护时经过一段延迟时间之后就会将Power MOS关掉(Cout),用以达到保护的目的,当锂电池电压一直下降到解除点(Overcharge Hysteresis Voltage)时就会回复,此时又会继续的充电,又保护,又放电充电放电,这种情形并不是一种很好的状况且安全性的问题将无法有效的获得解决。

锂电池一直重复着做着充电放电充电放电的动作, Power MOS的Gate将反复的High/Low,这样可能会使MOSFET变热.,也同时对于电池的寿命造成引想,由此可知Latch Mode的重要性。

假如锂电时保护电路在侦测到过充电保护时有Latch Mode,MOSFET将不会变热,且安全性相对的提高许多。在侦测到过充电保护之后,只要有连接充电器在电池包上,此时之状态及到达过充时锁住模式,因此,虽然锂电池的电压一值下降,但不会发生再充电的情形.要解除这个状况,只要将充电器移除并连接负载即可回复充放电的状态。 
 

 (4)   缩小保护电路组件: 将过充电和短路保护用的延迟电容给内包到保护IC里面

保护IC的要求:

(A)   过度充电保护的高精化: 

当锂离子电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态。此保护IC即检视电池电压,当侦测到过度充电时,则过度充电侦测的Power-MOSFET使之OFF而截止充电。此时所应注意者,就是过度充电的检测电压的高精度化,在电池充电时,使电池充电到饱满的状态是使用者很在意的问题,同时,兼顾到安全性的问题,就得在达到容许电压时截止充电状态。要同时符合这两个条件,就要有非常高精度的侦测器,目前精度为25mV,但将来势需有更精度的要求。

(B)   减低保护IC的耗电流达到过度放电保护目的: 

已充过电的锂离子电池电随着使用时间,电池电压会渐减,最后低到规格标准值以下。此时就需要再度充电。若未充电而继续使用的话,恐就无法再充电了(过放电状态)。而为防止过放电状态,保护IC即要侦测电池电压的状态,一旦到达过放电侦测电压以下,就得使放电一方的Power-MOSFET OFF而截止放电。但此时电池本身仍有自然放电及保护IC的消费电流存在,因此需要使保护IC的耗电流降到最低的程度。

(C)   过电流/短路保护需有低侦测电压及高精度的要求: 

因不明原因导致短路而有大电流耗损时,为确保安全而使之停止放电。在过电流的侦测是以Power MOS的Rds(on)为感应阻抗,以监视其电压的下降,此时的电压若比过电流侦测电压还高时即停止放电。为了使Power MOS的Rds(on)在充电电流与放电电流时有效的应用,需使该阻抗值尽量低,(目前约20mΩ ~30mΩ )。如此,过电流侦测电压就可较低。

(D)   实现耐压值: 

电池包与充电器连接时瞬间会有高压产生,因此保护IC因具备有"耐高压的要求(Ricoh的保护IC即可承受到28V)

(E)   低耗电: 

当到达保护时,其静态耗电流必须要小(0.1uA)

(F)   零伏可充电: 

有些电池在存放的过程中可能因为放太久或不正常的原因导致电压低到0V,故保护IC需要在0V也可以充电的动作 
保护IC功能未来发展

未来的发展将如前述,提高侦测电压的精度、降低保护IC的耗电流及包装、整合MOS 、提高误动作防止功能等,同时充电器连接端子的高耐压化也是开发的重点。

包装方面,目前已由SOT23-6渐渐的朝向SON6,将来还有CSP的Package,甚至COB产品的出现,用以满足现在所强调的轻薄短小,而保护IC也不是所有的功能都一定必须要用的,可根据不同的锂电池材料开发出单一保护(如:只有过充保护或过放保护功能),可大大的减少成本及空间,这对我们来说可未尝不是一件好事. 

当然,功能组件单晶化是一致的目标,如目前行动电话制造商都朝向将保护IC、充电电路、电源管理IC等外围电路集成单芯片,与逻辑IC构成双芯片的芯片组,但目前要使Power MOS的开路阻抗降低,难以与其它IC合组,即使以特殊技术制成单芯片,恐怕成本将会过高,因此,保护IC的单晶化将需一段时间来解决。


关键字:锂电池  充电保护  IC原理 编辑:冰封 引用地址:锂电池充电保护IC原理

上一篇:单元电池电压测量系统设计
下一篇:锌锰干电池充电器电路

推荐阅读最新更新时间:2023-10-18 16:20

锂电池成本下降30%,特斯拉未来要建200家超级电池厂?
    未来城市交通将会有多少纯电动汽车?对于其他工厂来说则是加快新产品的研发进度,尽快量产投放市场。而对于特斯拉来说如何成功建设“超级电池工厂”(gigafactories),进一步降低传统锂电池的成本才是未来发展的关键所在。根据Elon Musk的原定计划有望将锂电池的成本缩减到30%左右,他说:“30%并不是我们的最终目标,我们能够做的更好,这就需要大量的超级电池工厂,而为了满足未来交通发展需求至少需要200家这样的工厂。”     这些工厂的造价同样不菲,根据Musk消息称特斯拉预估将投资50亿美元用于建设首个超级电池工厂,最快将于今年6月开始动工,除了推动电动汽车发展之外还为Musk的另外一家公司SolarCit
[汽车电子]
Chroma 11210电池芯绝缘测试仪的性能特点及应用
Chroma 11210电池芯绝缘测试仪为***量测锂电池(干电芯)之漏电流(LC)或绝缘电阻(IR)并可进行绝缘品质检测所新推出之仪器。除锂电池干电芯以外,亦可量测各式电容产品和绝缘材料,除标准的LC/IR量测以外,11210尚具有一特殊功能: 于高压量测过程中,可针对绝缘体内微小的局部放电(Partial Discharge, PD) 或电气闪络(Flashover) 进行侦测与分析(以下简称“PD侦测功能”),此功能可确保锂电池干电芯在电解液填充前的品质,在生产线上,能将具有潜在瑕疵的产品提前筛出,避免瑕疵产品进入下一生产阶段或什至进入终端市场,相对于传统的绝缘测试,11210在绝缘材料品质检测这个领域,***进入了一个新的
[测试测量]
基于SWOT分析,美国为锂电池发展制定五大目标!
拜登政府上台后,在各个先进技术方向上和中国展开正面竞争。 锂电池 也不例外。6月7日,美国能源部车辆技术办公室发布了“国家 锂电 池蓝图”(National Blueprint for Lithium Batteries)(下称美国锂电蓝图)。锂电蓝图设定了五大目标,核心是建立美国锂电池材料、部件供应、自主生产、回收,以及科研引领能力。 美国锂电蓝图在研发方面,提出了2030年要实现的远期目标:加快研发,实现示范和规模化生产革命性的电池技术,包括固态和锂金属电池,实现生产成本低于60美元/KWh,比能量为500Wh/kg,以及不含钴和镍。 1 国别竞争:中国领先 在美国方面看来,中国和欧洲已经在 动力电池 领域取得
[汽车电子]
基于SWOT分析,美国为<font color='red'>锂电池</font>发展制定五大目标!
24M半固态锂电池 颠覆传统设计
当所有人都在为特斯拉的 超级工厂 计划拍案叫绝时,美国马萨诸塞州的一家低调而神秘的初创公司24M也 不甘寂寞 , 于近日推出了一款新型半固态锂电池。 半固态锂电池可以理解为可流动的半固态或可缩合的液态的合成物,即固相和液相的混合材料,例如,颗粒悬浮液、胶体悬浮液、乳化液、凝胶及胶束等材料。 研究人员称,既要让电池储存更多能量,同时还要收缩电池中的其它材料,使电池体积更小,那么只有在电池电极上 做文章 。众所周知,电极就是电池的心脏,主要用于充电和放电。电极之间的隔板可以保持阳极和阴极的隔离;电流收集器则可以从外部电池电路接收电子。 经过一系列实验,24M发现了一种方法,可以减少80
[汽车电子]
24M半固态<font color='red'>锂电池</font> 颠覆传统设计
恒流恒压的锂电池充电控制板
这是一种恒流恒压的锂电池充电控制板,图中Q1、R1、W1、TL431组成精密可调稳压电路。Q2、W2、R2构成可调恒流电路。Q3、R3、R4、R5、LED为充电指示电路。随着被充电锂电池电压逐渐上升,充电电流将逐渐减小,待电池充满后R4上的压降不断减小,最终使Q3截至,LED熄灭,为了保证电池能充足,请在指示灯熄灭后继续充电1~2小时,使用时需要在Q2、Q3装适当大小的散热片。
[电源管理]
恒流恒压的<font color='red'>锂电池</font><font color='red'>充电</font>控制板
手机锂电池的全方位实用手册
  一 手机锂电池的构成及构成   手机锂电池主要由塑胶壳上下盖、锂电芯、保护线路板(PCB)和可恢复保险丝(polyswitch)组成。有的厂家还配置了NTC、识别电阻、震动马达或充电电路等元件。   各部分功能如下:   (1) 锂电芯:提供可充放电源。   (2) 保护线路板(PCB):防止电池过充过放短路。   (3) 可恢复保险丝(PTC): 正热敏电阻起到高温保护作用同时又是保护线路板失效后的二重保护。   (4) 可恢复保险丝(NTC): 负热敏电阻,感应电池内部温度起到低温保护作用。   (5) 识别电阻:识别原装电池非原装电池不能使用   其中电芯是非常重要的,而机
[电源管理]
超低功耗的锂电池管理系统电路模块设计
  为了满足某微功耗仪表的应用,提高安全性能,提出了一种超低功耗锂电池管理系统的设计方案。采用双向高端微电流检测电路,结合开路电压和电荷积分算法实现电量检测。采用纽扣电池代 替DC/DC降压电路最大程度降低功耗。系统实现了基本保护、剩余电量检测、故障记录等功能。该锂电池管理系统在仪表上进行验证,结果表明具有良好的稳定性和可靠性,平均工作电流仅145μA。    保护执行电路: 电路是保护动作的执行机构,CH 是充电控制开关,DISCH是放电控制开关,通过控制CH和DISCH做出相应的保护动作,电路图如图所示。   CH和DISCH在正常工作时置为低电平,此时M1和M2均导通。当出现放电过流或者过放电状态,DISCH 置为高电平,
[电源管理]
超低功耗的<font color='red'>锂电池</font>管理系统电路模块设计
远翔FP8208A:3.5A同步开关模式单节锂电池充电IC
FP8208A 是一款开关模式降压型锂电池充电管理芯片,输入电压应用适合 5V 交流适配器,可对单节锂离子电池进行定电流或是恒压充电,其最大充电电流为 3.5A,最大充电电流可由外部电阻进行设定,在充电方面细分成 3 种模式,包含了涓流模式、定电流模式与定电压模式。FP8208A 集成了多项保护机制,包含了内置输入欠压保护、输入过压保护、芯片过温保护、电池短路保护、电池温度监控。 特色 ➢ 输入工作电压范围 4.8V~5.5V ➢ 高精准截止电压:4.2V±1% ➢ 可调式充电电流最高可达 3.5A ➢ 精准充电电流:±8% ➢ 固定工作频率 720kHz ➢ 充电指示灯显示 ➢ 自动再充电功能 ➢ 多种保护功能:输入欠压保护
[嵌入式]
远翔FP8208A:3.5A同步开关模式单节<font color='red'>锂电池</font><font color='red'>充电</font><font color='red'>IC</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved