一种简约整流电路的设计

最新更新时间:2012-03-06来源: 21IC关键字:整流电路  分频  锁相环 手机看文章 扫描二维码
随时随地手机看文章
    整流电路是电源的重要组成部分,它可将交流电变为直流电,应用十分广泛。可控硅整流电路广泛应用于机械制造工业和冶金工业中,它不仅要求电源的技术指标高,还要求体积小、重量轻、可靠性高。如果采用可控硅(SCR)作为整流元件,可以通过控制门极触发脉冲的时刻来控制输出电压的大小,这种整流称为可控整流。目前由于SCR能承受的电压,电流容量仍是目前器件中最高的,而且工作可靠,所以许多大容量场合仍大量使用SCR。

    可控硅整流电路中的可控硅是由触发电路提供触发信号而导通的,触发电路的工作性能直接影响着可控硅的工作。因此,触发电路是可控硅电路可靠、有效工作的关键。

    触发电路主要采用两种方法:采用分离元件设计的触发电路存在各相电路分散性大、调试不方便、稳定性和可靠性差等缺点;采用专门集成触发电路芯片设计的触发电路成本高,芯片的质量难以保证。在此利用通用集成电路设计了一种简约整流触发电路,触发三相桥式全控整流电路。

    1 电路的拓扑结构

    整流电路的结构如图1所示。


    1.1 同步移相电路

    同步移相电路由锯齿波发生器和电压比较器组成。同步变压器和整流变压器接在同一电源上,用同步变压器的次级电压控制锯齿波的发生器中三极管的导通,从而保证了触发脉冲和主电路电源同步。

    锯齿波与直流电平通过电压比较器比较可得到宽度变化的矩形波。调节电压比较器的输入电压即可改变输出波形的前沿位置,从而达到了移相的目的。

    该设计由LM311构成电压比较器。LM311在使用应注意:电源由0.01μF的瓷片电容旁路;两个输入脚之间接一个100~1 000 pF的电容,以便产生更整齐的比较器输出波形;短接管脚5和管脚6;为滤除和减弱输出信号的震荡,在比较器输出端的上拉电阻两端并接一个容量适当的电容。如图2所示。

    1.2 宽脉冲的形成电路
    锁相环与CD4017组成的6倍频电路,是利用分频器实现倍频功能的电路,倍频电路的输出信号频率是输入信号频率的6倍。电路原理图如图3所示。


    6分频器CD4017可输出Q0~Q5六路间隔、脉宽都为60°的脉冲,通过或门关系可得到与之相对应的6路信号,彼此间隔为60°,脉宽为120°的脉冲,波形图如图4所示。


    触发电路根据触发脉冲的宽度有单宽触发和双窄触发。实践证明单宽触发比双窄触发稳定。
    锁相环入锁时,具有“捕捉”信号的能力,可在某一范围内自动跟踪输入信号的变化。若电网频率变化时,锁相环会自动追踪,增强了电路的可靠性。

    1.3 脉冲列触发原理

    在触发脉冲装置中,单宽触发一般用光耦隔离,脉冲宽度可得到保持,但光耦需独立电源供电,增加了相应的配套设备;双窄触发一般用脉冲变压器隔离。若单宽用脉冲变压器隔离,会出现过饱和现象。为了避免过饱和现象,采用一高频信号分别和宽脉冲相与,得出与之相对用的6组脉冲信号。

    1.4 放大驱动电路

    放大驱动电路是由三极管和脉冲变压器组成。该电路的作用是对6组脉冲信号进行放大隔离,得到具有足够功率、可靠触发可控硅的触发信号。

    2 与传统整流电路的比较
    与传统六脉波整流电路相比,此电路的复杂程度很低,如表1所示。

3 实验波形
    图5(a)的波形是同步移相电路中LM311的两个输入端的波形,调节同步移相电路的R3,得到波形较陡的锯齿波;调节R7,可改变它第3脚的输入电平,得到前沿位置的变化的矩形波,从而达到移相的目的,且频率为工频频率50 Hz,如图5(b)所示的信号线1。信号线1输入到6倍频电路中,可得到是对应的倍频波形,即图5(b)所示的信号线2,它的频率是300 Hz,是输入信号1的6倍。


    为了安全,采用峰值为40 V的三相交流电源进行整流。当三相桥式全控整流电路的负载是电阻时,可得到如图6所示的整流波形,可发现每一个周期中整流输出电压波形都由6段线电压组成。图6(a)是控制角α=30°时的整流波形,最大值为40 V;图6(b)是α=60°时的整流波形,此时整流输出电压仍连续。α=60°是整流输出电压连续和断续的临界点,当α>60°时,整流输出电压断续。图6中示波器的参数:CH120.0 V,M5.00ms。

    4 结语

    该电路的核心是利用锁相环的倍频原理产生6组触发信号。实验证明,设计的电路结构简单,调试少,元件少,故障少,成本低,经济效益高。若加以完善,会带来很高的社会价值。

关键字:整流电路  分频  锁相环 编辑:探路者 引用地址:一种简约整流电路的设计

上一篇:触摸屏技术在16位单片机中的应用
下一篇:基于RS485的传收器雷击保护功能方案设计

推荐阅读最新更新时间:2023-10-18 16:28

基于单片机芯片的三相半控整流电路设计
整流电路广泛应用在直流电机调速,直流稳压电压等场合。而三相半控整流桥电路结构是一种常见的整流电路,其容易控制,成本较低。本文中介绍了一种基于 PIC690单片机与专用集成触发芯片TC787的三相半控整流电路,它结合专用集成触发芯片和数字触发器的优点 ,获得了高性能和高度对称的触发脉冲。它充分利用单片机内部资源 ,集相序自适应、系统参数在线调节和各种保护功能于一体,可用于对负载的恒电压控制。主电路采用了三相半控桥结构,直流侧采用LC滤波结构来提高输出的电压质量。 系统总体设计 本系统通过PIC690单片机作为主控制芯片,用晶闸管作为主要开关器件。设计的目标是保持输出的直流电压稳定,输出电压纹波小,交流输出测电流THD
[电源管理]
低功率时钟选项——满足客户的低功率需求
不断增长的低功率电子设备需求在消费、工业和汽车市场的各个角落随处可见,无论应用是由市电供电还是电池供电。不断上涨的能源成本、更高的竞争基准要求和日益严格的立法控制只是对最新一代电子产品提出更高功效要求的几个要素。 通过深入到最新的微控制器(MCU)的核心,就有可能从根本上实现低功耗。本文一开始先介绍了飞思卡尔MC9S08系列产品提供的几种不同时钟模块,然后详细介绍了多功能时钟发生器(MCG)提供不同时钟选项。这种发生器是当今系列产品中最灵活的模块。本文向读者介绍时钟选择对于在应用中实现低功率运行是多么重要。 本文介绍了MCG的工作原理,并详细介绍了帮助降低功耗的一些属性,如锁相环(PLL)、锁频环(FLL)、分频系数,
[单片机]
基于ADF4360_4锁相频率合成器的混频器本振源电路
0 引言 锁相(Phase Lock)技术是一种相位负反馈频率控制技术,该技术在锁定时无剩余频差,并具有良好的窄带载波跟踪性能和带宽调制跟踪性能,而且对相位噪声和杂散也具有很好的抑制作用。因此,通过锁相频率合成技术实现的频率源已在通信、电视等领域得了广泛应用。本文介绍的ADl公司的ADF4360系列芯片就是用于无线通信射频系统(GSM,DECT,PCS,WCDMA。DCS)基站和WLAN混频电路的一款性价比很高,且应用范围较广的锁相芯片。 1 ADF4360_4的性能特点 ADF4360_4丰要由数字鉴相器、电荷泵、R分频器、A,B计数器及双模前置P/P+1分频器等组成。数字鉴相器对R计数器与N计数器的输出信号进
[网络通信]
三相桥式全控整流电路全面解析
随着社会生产和科学技术的发展,整流 电路 在自动 控制 系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流 电路 有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、 电容 、电感、 电阻 等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同 控制 角、桥故障情况下进行了仿真分析,既进一步加深了三相
[电源管理]
三阶电荷泵锁相环系统级设计与仿真验证
摘 要:本文采用锁相环开环传输函数波特图对三阶电荷泵锁相环进行了系统级设计,并且对相位裕度与建立时间,稳定性与环路带宽这两对矛盾进行了权衡。然后在SIMULINK中建立了包含电荷泵锁相环离散时间特性和非线性本质的行为模型,并进行了仿真验证。 关键词:电荷泵锁相环; 时钟合成器; 波特图; 行为模型 引言 锁相环是现代通信系统中的关键模块,通常集成在系统芯片上,其主要应用领域为:数据通信中的时钟与数据恢复、无线通信中的频率合成器、微处理器中的时钟合成与同步等。电荷泵锁相环是当今最流行的锁相环结构,为了减小压控振荡器控制电压的纹波,它采用了二阶无源环路滤波器,这样就构成了三阶电荷泵锁相环。系统级设计与仿真验证是锁相环设计
[模拟电子]
基于VHDL的交通灯控制器设计
应用VHDL语言设计数字系统,大部分设计工作可在计算机上完成,从而缩短系统开发时间,提高工作效率。下面介绍基于VHDL设计交通灯控制器的一种方案,并给出源程序和仿真结果。 1 系统功能与要求 交通灯控制器控制两个主干道交叉路口的交通,路口车辆多,直行信号、左转弯信号分开显示,a,b两个主干道的通行时间相等,其中指示直行的绿灯亮30 s,指示左转弯的绿灯亮12 s,绿灯变至红灯时,黄灯亮3 s,以便于车辆能停在停车线内,红灯信号的最后3 s相应的黄灯也同时亮,以便提示驾驶人员准备起步。在两个主干道路口都配备传感器用来检测有无车辆通行。当两个主干道都有车辆时,自动处于主干道a绿灯,主干道b红灯的状态,然后轮流切换通行。当主
[应用]
高功率因数的单相全桥PWM整流电路原理
在电子电路设计过程当中,如何不断的提高功率因数,始终是众多开发者一直在不断研究的问题。 PWM 整流 电路是一种采用PWM控制的整流电路,能够极有效率的提高电路的功率因数。本篇文章将对单相 全桥 PWM整流电路的工作原理进行讲解,希望能为电源新手们提供便利。 图1 如图1所示,使用三角波和正弦信号的比较方法,来对电路中的V1~V4来进行SPWM控制。这样就可以在桥的交流输入端AB产生一个SPWM波uAB。uAB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于Ls的 滤波 作用,谐波电压只使is产生很小的脉动。当正弦信号波频率和电源频率相同时,is也为与电源频率相同的正
[电源管理]
高功率因数的单相全桥PWM<font color='red'>整流电路</font>原理
基于MC145152-2芯片的频率合成器的设计
1 引 言      频率合成技术是现代通信的重要组成部分,它是将一个高稳定度和高准确度的基准频率经过四则运算,产生同样稳定度和准确度的任意频率。随着大规模集成电路的发展,利用锁相环频率合成技术研制出了很多频率合成集成电路。其中,以摩托罗拉公司的MC14515x-2系列较为先进,本文将介绍一种基于MC145152-2芯片的频率合成器。这种锁相环频率合成器的稳定度和准确度与基准频率相当,不产生额外的误差。它在移动通信等领域有着广泛的应用。 2 MC145152-2芯片的特点及功能      MC145152-2芯片是摩托罗拉公司生产的锁相环频率合成器专用芯片。它是MC145152-1芯片的改进型。MC145152-2芯片具有
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved