1 Multisim的主要功能和特点
Multisim2001是加拿大Interactive Im-age Technologies公司推出的电路设计和仿真分析软件,它将电路原理图、电路仿真及PLD设计三者合一,利用该软件可以建立模拟、数字及其混合电路,并进行仿真。其特点是:易学实用性强,界面简洁,元件库齐全,仿真功能强大。学生普遍反映电子类课程难学,主要问题是概念抽象、课程教学的直观性差。随着多媒体教学的普及,如果教学中引入电路设计和仿真分析软件Multisim2001在课堂进行演示,可以解决电子技术课程概念抽象、课程教学的直观性差的普遍问题,达到增强学生的感性认识,提高教学效率的效果。
2 Multisim用于单管共发射极放大电路的电路分析
利用Multisim软件进行仿真分析的基本步骤为:
根据原理和设计需要,创建仿真电路原理图,然后根据实际情况设置好电路图选项,设定仿真分析方法,打开仿真开关,运行所设计好的电路,借助仿真仪器,即可得到仿真结果,同时结果还可以对输出的文件和数据做进一步分析处理。进入工作窗口绘制电路图。按图1所示设置电路元件参数。当基极的电流有一个微小变化量时,晶体管的集电极电流将产生一个较大的变化量,这个较大的变化量流过集电极负载,使集电极电压发生相应的变化,于是晶体管集电极和发射极之间的电压发生一个相反的变化量,由电路分析可知,这个相反的变化量就是输出电压。下面通过仿真分析观察一下这个过程。
2.1 静态工作点计算
输入信号采用有效值为10 mV,频率为1 000 Hz的正弦信号,然后点击Simulate→analyses→DC operating point分析静态工作点,得到如图2结果。
理论值:
由式(1)、式(2)和式(3)可得出仿真结果与理论分析计算基本一致。
2.2 输出电压波形分析
添加oscilloscope,其中A通道观察负载RL处的输出信号;B通道观察输入信号。可以得到如图3波形。由图3可知,首先,当输入电压有一个微小变化时,通过放大电路,在输出端可得到一个比较大的电压变化量。可见,单管共发射极放大电路能够实现电压放大作用。其次,当输入一个正弦电压时,输出端正弦电压信号的相位与输入端信号的相位相反,可见单管共发射极放大电路还具有倒相作用。
2.3 频率特性分析
由于放大器件本身具有极间电容,此外放大电路中有时存在电抗性元件,所以当放大电路输入不同频率的正弦电压信号时,电路的放大倍数将有所不同,而成为频率的函数。在中频段,各种容抗的影响可以忽略不计,所以电压放大倍数基本上不随频率而变化。在低频段,由于隔直电容的容抗增大,信号在电容上的压降也增大,所以电压放大倍数将降低。同时,隔直电容与放大电路的输入电阻构成一个RC高通电路,因此将产生0~+90°之间的超前附加相位移。在高频段,由于容抗减小,故隔直电容的作用可以忽略,但是,晶体管的极间电容并联在电路中,将使电压放大倍数降低,而且,构成一个RC低通电路,产生0~-90°之间滞后的附加相位移。为了能更直观地分析和掌握单管共发射极放大电路的频率特性,启动Simulate→analyses→AC analysis进行交流分析,得到如图4所示的幅频和相频响应曲线:
由图4可知,单管共发射极放大电路在不同频率范围的放大倍数和附加相位移与理论定性分析基本一致。
3 结语
用仿真软件Multisim对单管共发射极放大电路输出电压波形和频率特性进行了仿真,结果显示与理论基本相同。课堂上通过理论讲授分析,可使学生对电路的工作原理有一定的初步认识。通过仿真,学生可以把抽象的认识和比较形象的仿真结果联系起来,加深对课程理论知识的理解。因此,将仿真软件与传统的课堂教学有机地结合起来,能够更好地提高学生的学习积极性。
上一篇:开关电源的基本工作原理
下一篇:采用分流调节器的简易基准电压发生电路功能及原理介绍
推荐阅读最新更新时间:2023-10-18 16:28
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况