电子技术课程是电类专业一门非常重要的专业基础课,该课程的教学质量直接关系到后续课程的学习,关系到学生的培养质量。电子技术课程具有基础性、工程性、实践性的特点。近年来,电子技术的发展日新月异,新技术和新器件不断涌现,日益丰富着电子技术课程的教学内容。传统的电子技术教学方法和内容已经不能很好地适应人才培养的要求,为了更好地提高电子技术课程教学效果,在课堂上引入Multi sim仿真分析不失为一个行之有效的方法。Multisim是当今世界上著名的电路仿真标准工具之一。本文将结合电子技术课程中的典型电路详细说明Multisim的应用。
1 Multisim的主要功能和特点
Multisim2001是加拿大Interactive Im-age Technologies公司推出的电路设计和仿真分析软件,它将电路原理图、电路仿真及PLD设计三者合一,利用该软件可以建立模拟、数字及其混合电路,并进行仿真。其特点是:易学实用性强,界面简洁,元件库齐全,仿真功能强大。学生普遍反映电子类课程难学,主要问题是概念抽象、课程教学的直观性差。随着多媒体教学的普及,如果教学中引入电路设计和仿真分析软件Multisim2001在课堂进行演示,可以解决电子技术课程概念抽象、课程教学的直观性差的普遍问题,达到增强学生的感性认识,提高教学效率的效果。
2 Multisim用于单管共发射极放大电路的电路分析
利用Multisim软件进行仿真分析的基本步骤为:
根据原理和设计需要,创建仿真电路原理图,然后根据实际情况设置好电路图选项,设定仿真分析方法,打开仿真开关,运行所设计好的电路,借助仿真仪器,即可得到仿真结果,同时结果还可以对输出的文件和数据做进一步分析处理。进入工作窗口绘制电路图。按图1所示设置电路元件参数。当基极的电流有一个微小变化量时,晶体管的集电极电流将产生一个较大的变化量,这个较大的变化量流过集电极负载,使集电极电压发生相应的变化,于是晶体管集电极和发射极之间的电压发生一个相反的变化量,由电路分析可知,这个相反的变化量就是输出电压。下面通过仿真分析观察一下这个过程。
2.1 静态工作点计算
输入信号采用有效值为10 mV,频率为1 000 Hz的正弦信号,然后点击Simulate→analyses→DC operating point分析静态工作点,得到如图2结果。
理论值:
由式(1)、式(2)和式(3)可得出仿真结果与理论分析计算基本一致。
2.2 输出电压波形分析
添加oscilloscope,其中A通道观察负载RL处的输出信号;B通道观察输入信号。可以得到如图3波形。由图3可知,首先,当输入电压有一个微小变化时,通过放大电路,在输出端可得到一个比较大的电压变化量。可见,单管共发射极放大电路能够实现电压放大作用。其次,当输入一个正弦电压时,输出端正弦电压信号的相位与输入端信号的相位相反,可见单管共发射极放大电路还具有倒相作用。
2.3 频率特性分析
由于放大器件本身具有极间电容,此外放大电路中有时存在电抗性元件,所以当放大电路输入不同频率的正弦电压信号时,电路的放大倍数将有所不同,而成为频率的函数。在中频段,各种容抗的影响可以忽略不计,所以电压放大倍数基本上不随频率而变化。在低频段,由于隔直电容的容抗增大,信号在电容上的压降也增大,所以电压放大倍数将降低。同时,隔直电容与放大电路的输入电阻构成一个RC高通电路,因此将产生0~+90°之间的超前附加相位移。在高频段,由于容抗减小,故隔直电容的作用可以忽略,但是,晶体管的极间电容并联在电路中,将使电压放大倍数降低,而且,构成一个RC低通电路,产生0~-90°之间滞后的附加相位移。为了能更直观地分析和掌握单管共发射极放大电路的频率特性,启动Simulate→analyses→AC analysis进行交流分析,得到如图4所示的幅频和相频响应曲线:
由图4可知,单管共发射极放大电路在不同频率范围的放大倍数和附加相位移与理论定性分析基本一致。
3 结语
用仿真软件Multisim对单管共发射极放大电路输出电压波形和频率特性进行了仿真,结果显示与理论基本相同。课堂上通过理论讲授分析,可使学生对电路的工作原理有一定的初步认识。通过仿真,学生可以把抽象的认识和比较形象的仿真结果联系起来,加深对课程理论知识的理解。因此,将仿真软件与传统的课堂教学有机地结合起来,能够更好地提高学生的学习积极性。
关键字:电子线路 辅助分析 线路仿真
编辑:探路者 引用地址:基于Multisim的电子线路分析与仿真
推荐阅读最新更新时间:2023-10-18 16:28
直流低压稳压电源电子线路设计原理图
直流低压稳压电源原理图分析: 开关电源部分的VD1-VD4、R1、C1、C2组成整流滤波电路。NE555和R2、R3、C4、VD6等元件组成多谐振荡电路,其频率约20KHz。R4、C3、VD5组成降压稳压电路,为NE555提供12V工作电源。大功率管VT1及变压器T构成开关电路。VT1的工作状态由NE555的③脚控制,导通时间由脉冲宽度决定,调整R3即可改变脉冲宽度。脉冲宽度变宽,输出电压升高;脉冲宽度变窄,输出电压降低。VT2及R8、R9、C6组成过流保护电路。当负载过重或发生短路故障时,VT2导通,强迫NE555复位停振,从而保护VT1不致损坏。C7、R10为保护网络,防止VT1的c-e结被瞬间脉冲击穿。两个次级绕组经
[电源管理]
示波器的常见问题
1.对一个已设计完成的产品,如何用示波器经行检测分析其可靠性?
答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。
2.决定示波器探头价格的主要因素是什么?
答:示波器的探头有非常多的种类,不同的性能,比如高压,差分,有源高速探头等等,价格也从几百人民币到接近一万美元。价格的主要决定因素当然是带宽和功能。探头是示波器接触电路的部分,好的探头可以提供测试需要的保真度。为做到这一点,即使无源探头,内部也必须有非常多的无源器件补偿电路RC网络。
3.一般的示波器探头的
[测试测量]
电子线路CAD模拟软件在高频电路分析中的挑战
引言
随着电子信息产业的迅猛发展,片式电感作为新型基础无源器件,以其良好的性能价格比和便于高密度贴装等显著优点,迅速得到了广泛应用,尤其在以移动手机为代表的通信终端设备中,片式电感获得了典型的高频应用。由于RF电路的工作频率不断提升,片式电感在应用方面的性能特点发生了明显变化,已经开始显现出低端微波频段的工作特性。因此,为有效提升片式电感的电性参数,改善RF电路性能,必须进一步分析其低频特性与高频特性的不同规律。
另一方面,不断推陈出新的通信系统(GSM、CDMA、PCS、3G…)使得片式电感的工作频率逐步达到了2GHz甚至更高。因此,以传统的集中参数电路理论对片式电感器件进行阻抗分析,则显现出越来越明显
[模拟电子]
电子线路考试大纲
电子线路考试大纲
基本参考书:
模拟电路部分,童诗白、华成英: 模拟电子技术基础 (第三版)教师手册
数字电路部分,阎 石: 数字电子技术基础 (阎石第四版课后习题答案详解)
说明:每章要求中,“熟悉”内容为基本概念类内容,“掌握”内容为分析、设计与计算类内容。
1. 基本放大电路
2. 多级放大电路与集成放大电路
3. 负反馈放大电路
4. 放大电路的频率特性
5. 组合逻辑电路
6. 触发器及其简单应用
7. 时序逻辑电路
1 基本放大电路
本章要求:熟悉晶体管与
[模拟电子]
直流低压稳压电源电子线路设计原理图
直流低压稳压电源原理图分析: 开关电源部分的VD1-VD4、R1、C1、C2组成整流滤波电路。NE555和R2、R3、C4、VD6等元件组成多谐振荡电路,其频率约20KHz。R4、C3、VD5组成降压稳压电路,为NE555提供12V工作电源。大功率管VT1及变压器T构成开关电路。VT1的工作状态由NE555的③脚控制,导通时间由脉冲宽度决定,调整R3即可改变脉冲宽度。脉冲宽度变宽,输出电压升高;脉冲宽度变窄,输出电压降低。VT2及R8、R9、C6组成过流保护电路。当负载过重或发生短路故障时,VT2导通,强迫NE555复位停振,从而保护VT1不致损坏。C7、R10为保护网络,防止VT1的c-e结被瞬间脉冲击穿。两个次级绕组经
[电源管理]
微测系列:高校“高频电子线路实验”(1)
高频电子线路实验 是我国高等学校电子与信息类专业和其他相关专业普遍要做的实验,主要以无线通信系统中的基本单元电路实验为主要内容,包括单元电路和综合系统电路实验。
记得我当年上学的时候,普遍使用面包板搭电路做实验,而这些年来,为配合各种教学实验而诞生的形形色色的 实验箱 已成为我国 一道风景线 。少了自己动手的环节,也许带来的是简单高效, 高频电子线路实验箱 也不例外,设计生产厂家较多,随意找到两个,分别如图1和图2所示,可以看出,采用的电路方案和参数大同小异,做工工艺 有俭有奢 。
图1:高频电子线路实验箱1
图2:高频电子线路实验箱2
对于正在上学的一部分学生来讲,初做这些实验的时候可能只是
[测试测量]
由电子线路控制的可变增益视频支路放大器
由电子线路控制的可变增益视频支路放大器
在这个应用电路中使用LT1228互导放大器,增益在——12-+8dB时间可调。
[模拟电子]