基于VHDL的通信编码波形的设计与仿真

最新更新时间:2012-03-12来源: 21IC关键字:编码方式  信号传输  FPGA 手机看文章 扫描二维码
随时随地手机看文章

    引言

    信号传输一般可分为两大部分:编码与解码。其中编码要求根据所传输信号特点选择合适的编码方式。由于不同的信号在不同的环境中进行传输,受到的干扰是不同的,而选择合适的编码方法可以最大限度的避免干扰,使通信更加顺畅、更加准确。

    要实现不同的编码方式关键是要找到合适的算法,并且要求算法必须简洁亦兼容。笔者在这里主要采用了对比、联合和模块化的设计方法,使每一种编码成为一个独立模块,但又共用同一个或多个时钟。由此,大大节约了程序的存储空间,减少了程序的调试时间。

    文章将用VHDL设计八种常用的编码方式,并运用ALTERA公司的QUARTUSII设计软件进行仿真调试。QUARTUSII设计软件是一款开放、与结构无关、多平台、完全集成化、丰富的设计库、模块化工具、支持各种HDL、有多种高级编程语言接口的非常先进的EDA工具软件。另外,超高速硬件描述语言VHDL具有强大的语言结构、多层次的描述功能、良好的移植性和快速的ASIC转换能力,支持硬件的设计、综合、验证和测试。因此,应用VHDL设计通信编码波形具有重要意义。

    总体方案设计

    方案总体设计如图1所示。首先,在运用VHDL编写程序时必须遵照系统规则,按照系统库函数调用,否则编译将会产生问题。其次,考虑到分模块编程,而每一种编码方式的编程会用到不同频率的时钟,因此要将系统时钟二分频、四分频和八分频,以备需要。然后就是要设计选择模块,方便对八种编码的自由选择。再进行 各个编码模块的VHDL编码,进而可以逐个编译仿真。最后,当每一个模块编译仿真通过后,就是要将每一个独立模块程序整合在一起,形成总的编码程序,并且调试总程序。

图1 总体设计流程图

单元模块设计及调试

分频模块

    工作原理

    所谓分频,就是将一个给定频率较高的数字输入信号,经过适当的处理后,产生一个或数个频率较低的数字输出信号。分频本质上是加法器的变化,其计数值由分频常数N=fin/fout(fin是输入频率,fout是输出频率)决定,其输出不是一般计数器计数结果,而是根据分频常数对输出信号的高、低电平进行控制。

    软件设计

    下面设计一个对输入时钟信号进行2分频、4分频和8分频的分频程序。根据实际需要还可以设计分频系数为2N的分频器,只需要实现一个模N的计数器,再把模N的计数器的最高位直接付给分频器的输出信号,即可得到所需要的分频信号。

    分频系数是2的整数次幂的偶数分频器模块图如图2所示。

图2 2、4、8分频器的RTL模块图

    此程序中rst为低电平有效,若实现2分频电路则输出最高有效位count(0),4分频电路输出最高有效位count(1),依次类推,8分频输出最高有效位count(2)。

    在MAX-plusII环境中编译仿真波形如图3所示。

图3 2、4、8分频波形

    选择模块

    工作原理

    此模块是用于选择信号的,作用就是当输入多路信号时,只选取其中一路输出,其选择依据是根据其地址线的信号,地址线有N条,就能制作2N选一选择器。

    软件设计

    根据选择模块的工作原理,应用VHDL编写的选择器模块图如图4所示。

图4 选择器的模块图

    选择器程序在QUARTUSII环境中编译仿真波形如图5所示。

 
 
图5 选择器波形

功能模块

NRZ-L(不归零码)

NRZ-L(平)码无论是“1”还是“0”时,相邻码元电平极性均不改变,即在4分频的时钟clk上升沿随输入信号din变化而输出信号encoder-out。

具体VHDL模块图如图6所示。

图6 NRZ-L(平)的模块图

程序在QUARTUSII环境中编译仿真波形如图7所示。


图7 NRZ-L码波形

NRZ-M(信号差分码)

NRZ-M信号差分码,当为“1”时相邻码元电平极性改变,“0”时相邻码元电极性不改变,即在时钟clk为4分频的上升沿遇输入信号datain “1”而跳变,“0”保持输出信号encoder-out。

具体VHDL模块图如图8所示。

图8 NRZ-M(信号差分码)的模块图

程序在QUARTUSII环境中编译仿真波形如图9所示。

图9 NRZ-M码波形

NRZ-S(空格差分码)

NRZ-S(空格差分码),当为“0”时相邻码元电平极性改变,“1”时相邻码元电极性不改变,即与NRZ-M(信号差分码)恰好相反,clk为4分频。

具体VHDL模块图如图10所示。

图10 NRZ-S(空格差分码)的模块图

程序在QUARTUSII环境中编译仿真波形如图11所示。


图11 NRZ-S码波形

RZ(单极性归零码)

在归零码RZ中,码元中间的信号回归到0电平,因此任意两个码元之间被0电平隔开。当为“1”时为“0”,当为“0”时则为“0”,即输入datain信号中间隔开,时钟clk是2分频,在上升沿遇“1”跳变,其它为“0”,输出信号encoder-out。

具体VHDL模块图如图12所示。

图12 RZ(单极性归零码)的模块图

程序在QUARTUSII环境中编译仿真波形如图13所示。


图13 RZ码波形

积分曼彻斯特码

曼彻斯特编码是一种双相码。除了中间发生跳变外,当为“0”时相邻码元电平极性改变,“1”时相邻码元电极性不改变,由于要将输入datain信号中间跳变,故需两个时钟clk1、clk2,且clk1是4分频,clk2是2分频,都在两时钟上升沿遇“0”跳变,遇“1”保持,输出信号encoder-out。

其具体VHDL模块图如图14所示。


图14 积分曼彻斯特码的模块图

程序在QUARTUSII环境中编译仿真波形如图15所示。

图15 积分曼彻斯特码波形

双相-M码

双相-M码:除了相邻码元电平极性发生跳变外,当为“1”时中间发生跳变,当为“0”时中间不发生跳变,即时钟clk1为4分频,输入信号datain相邻码元极性跳变,遇“1”时在时钟clk1的上升、下降沿跳变,输出信号encoder-out。

具体VHDL模块图如图16所示。

 
 
图16 双相-M码的模块图

程序在QUARTUSII环境中编译仿真波形如图17所示。

图17 双相-M码波形

双相-L码

双相-L码,除了中间发生跳变外,当为“1”时相邻码元电平极性改变,“0”时相邻码元电极性不改变,即需要2分频时钟clk1,datain信号中间遇时钟clk1上升沿跳变外,且遇“1”相邻码元极性改变,“0”时不变,输出信号encoder-out。

具体VHDL模块图如图18所示。

图18 双相-L

程序在QUARTUSII环境中编译仿真波形如图19所示。

 
 
图19 双相-L码波形

双相-S码

双相-S码,除了相邻码元电平极性发生跳变外,当为“0”时中间发生跳变,当为“1”时中间不发生跳变,即与双相-L码相反,clk1为4分频。

具体VHDL模块图如图20所示。

图20 双相-S码的模块图码的模块图

程序在QUARTUSII环境中编译仿真波形如图21所示。



图21 双相-S码波形

整体程序调试

整体程序在MAX-plusII环境中的编译仿真波形如图22所示。



图22 八种编码波形

    总结

1) 运用VHDL编写以上八种编码是可行的。

2) 经过观察各模块的仿真波形,符合各个编码的特性。

3) 通过整体程序的调试仿真,并在FPGA上实现了波形的键选。

关键字:编码方式  信号传输  FPGA 编辑:探路者 引用地址:基于VHDL的通信编码波形的设计与仿真

上一篇:基于无线网络控制的智能照明系统
下一篇:艾默生网络能源--通信行业的绿色“引擎”

推荐阅读最新更新时间:2023-10-18 16:29

基于FPGA的卷积码的编/译码器设计
  卷积码是Elias在1955年最早提出的,稍后,Wozencraft在1957年提出了一种有效译码方法,即序列译码。Massey在1963年提出了一种性能稍差,但比较实用的门限译码方法,由于这一实用性进展使卷积码从理论走向实用。而后Viterbi在1967年提出了最大似然译码法,该方法对存储器级数较小卷积码的译码很容易实现,并具有效率高、速度快、译码器简单等特点,人们后来称其为维特比算法或维特比译码,广泛应用于现代通信中。本文主要论述了基于Xilinx公司的FPGA的卷积编码器及相应的维特比译码器的研究,并在幸存路径存储与译码输出判决方面提出了改进算法,从而使译码器结构得到简化。    1 卷积码的编码原理与实现
[嵌入式]
基于<font color='red'>FPGA</font>的卷积码的编/译码器设计
基于FPGA的交流电测量仪的设计
在电力调度自动化系统中,测量电压和频率是最重要的功能。如何快速、准确地采集显得尤为重要。目前根据采集信号的不同,可分直流采样和交流采样两种方式,直流采样虽然设计简单,但无法实现实时信号的采集;变送器的精度和稳定性对测量精度有很大影响,无法满足电力系统实时性、可靠性的要求 。交流采样法按照一定规律对被测信号的瞬时值进行实时采样, 再按设计的算法进行数值处理, 从而获得测量值。与直流采样法相比更易获得高精度、高稳定性的测量结果。由于FPGA运行速度快、内部程序并行运行,具有处理更复杂功能的能力,因此FPGA 和交流采样相结合,可以满足电力系统实时性、可靠性的要求。 1 系统硬件电路组成 以日常照明所用的交流电(电压为220 V,频
[测试测量]
基于<font color='red'>FPGA</font>的交流电测量仪的设计
基于FPGA的数字示波器波形合成器研究
引言 波形刷新率是评判数字示波器性能优劣的重要指标之一,它直接体现了示波器抓取波形细节的能力,刷新率越高意味着捕获异常的能力越强。目前国内示波器的最高波形刷新率在200000wfms/s左右,而高于200000wfms/s的基本上依赖进口。国内示波器刷新率做不高的主要原因有2个: ①波形合成技术和国际先进水平相比,差距还比较大; ②波形存储采用外部存储器。 本文通过对示波器波形合成技术的深入研究,提出一种基于FPGA的高刷新率的波形合成器,刷新率可达到400000wfms/s,该波形合成器已经成功应用在高刷新率示波器中。 1、波形三维映射模型 波形数据的三维信息包括:时间,幅度和幅度命中次数。在现代DSO中,可将多次触发后
[测试测量]
基于<font color='red'>FPGA</font>的数字示波器波形合成器研究
FPGA+DSP实现HDLC(高级数据链路控制)功能
   引言   HDLC的ASIC芯片使用简易,功能针对性强,性能可靠,适合应用于特定用途的大批量产品中。但由于HDLC标准的文本较多,ASIC芯片出于专用性的目的难以通用于不同版本,缺乏应用灵活性。有的芯片公司还有自己的标准,对HDLC的CRC(循环冗余码校验)序列生成多项式等有不同的规定。专用于HDLC的ASIC芯片其片内数据存储器容量有限,通常只有不多字节的FIFO(先进先出存储器)可用。对于某些应用来说,当需要扩大数据缓存的容量时,只能对ASIC再外接存储器或其他电路,ASIC的简单易用性就被抵销掉了。 HDLC的软件编程方法功能灵活,通过修改程序就可以适用于不同的HDLC应用。但程序运行占用处理器资源多,执行速度慢
[嵌入式]
用<font color='red'>FPGA</font>+DSP实现HDLC(高级数据链路控制)功能
用单片机实现SRAM工艺FPGA的加密应用
在现代电子系统设计中,由于可编程逻辑器件的卓越性能、灵活方便的可升级特性,而得到了广泛的应用。由于大规模高密度可编程逻辑器件多采用SRAM工艺,要求每次上电,对FPGA器件进行重配置,这就使得可以通过监视配置的位数据流,进行克隆设计。因此,在关键、核心设备中,必须采用加密技术保护设计者的知识产权。 1 基于SRAM工艺FPGA的保密性问题 通常,采用SRAM工艺的FPGA芯片的的配置方法主要有三种:由计算机通过下载电缆配置、用专用配置芯片(如Altera公司的EPCX系列芯片)配置、采用存储器加微控制器的方法配置。第一种方法适合调试设计时要用,第二种和第三种在实际产品中使用较多。第二种方法的优点在于外围电路非常简单,
[应用]
新思科技公司推出其Synopsys HAPS®-70系列基于FPGA的原型验证系统
    新思科技公司(Synopsys, Inc.)日前宣布推出其Synopsys HAPS®-70系列基于FPGA的原型验证系统,从而扩展了其HAPS产品线以应对系统级芯片(SoC)设计的不断增加的规模及复杂度。HAPS-70系统提供了紧密集成的原型验证软件和硬件,包括高速时域多路复用(HSTDM)技术,它与新的HapsTrak 3 I/O连接器相结合可提供比传统的连接器和引脚复用技术高出可达3倍的原型性能改进。此款新的原型系统利用了一个可扩展的架构以及最新一代的赛灵思Virtex-7 FPGA器件,以支持范围广泛的、各种大小的设计,其容量可从1200万到1.44亿个专用集成电路(ASIC)门。Virtex-7’s I/O ban
[嵌入式]
嵌入式高速多通道大缓存搭载AD+FPGA+PCIe的AD采集方案
高速多通道实时数据采集系统的方案在工业监控、环境监测等方面的应用非常广泛。随着科学技术的发展,数据采集技术正向着高精度、高速度、稳定可靠、集成化及实时系统的方向发展。并且通过搭载了最新的 FPGA ,使得产品的升级换代变得更加容易和便捷。 传统的基于数据采集、A/D转换产品,无论是系统体积、系统功耗、系统数据采集精度、系统处理能力以及产品更新升级等方面都不尽如人意,迫切需要一种能以较低的功耗和体积,实现高精度的数据采集、高性能的系统处理能力的嵌入式方案产品。 Avaldata公司设计的嵌入式高速大缓存 AD 采集板卡APX-500和APX-510就是最新型的AD + FPGA + PCIe ,并且配
[嵌入式]
Altera宣布发售业界第一款40-nm FPGA
Altera公司(NASDAQ: ALTR)今天宣布,开始提供业界第一款40-nm FPGA芯片。面向通信、广播、测试、医疗和军事等各类市场的客户,Stratix® IV FPGA在高端FPGA解决方案中具有业界最高的密度、最好的性能、最大的系统带宽以及最低的功耗。此次推出的第一款器件是EP4SGX230,它含有230K逻辑单元(LE),工作速率高达8.5 Gbps的36个嵌入式收发器,17 Mbits RAM以及1,288个嵌入式乘法器。 采用了40-nm工艺节点技术,Stratix IV FPGA系列包括两种型号产品,增强型(E)和收发器型(GX)。Stratix IV系列提供多达680K逻辑单元,逻辑容量是
[嵌入式]
Altera宣布发售业界第一款40-nm <font color='red'>FPGA</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved