为节能式电源选择正确的拓扑

最新更新时间:2012-03-13来源: 21IC关键字:节能式  电源拓扑  电源管理 手机看文章 扫描二维码
随时随地手机看文章

    世界各地有关降低电子系统能耗的各种倡议,正促使单相交流输入电源设计人员采用更先进的电源技术。为了获得更高的功率级,这些倡议要求效率达到87% 及以上。由于标准反激式 (flyback) 和双开关正激式等传统电源拓扑都不支持这些高效率级,所以正逐渐被软开关谐振和准谐振拓扑所取代。

    工作原理

    图1所示为采用三种不同拓扑 (准谐振反激式拓扑、LLC谐振拓扑和使用软开关技术的非对称半桥拓扑) 的开关的电压和电流波形。

 

图1:准谐振、LLC和非对称半桥拓扑的比较

    输出二极管电流降至零

    当初级端耦合回次级端时的斜坡变化

    体二极管导通,直到MOSFET导通

 

 


 

    这三种拓扑采用了不同的技术来降低MOSFET的开通损耗,导通损耗的计算公式如下:

 

    在这一公式中,ID 为刚导通后的漏电流, VDS 为开关上的电压, COSSeff 为等效输出电容值(包括杂散电容效应),tON 为导通时间,fSW 为开关频率。.

    如图1所示,准谐振拓扑中的 MOSFET 在刚导通时漏极电流为零,因为这种转换器工作在不连续传导模式下,故开关损耗由导通时的电压和开关频率决定。准谐振转换器在漏电压最小时导通,从而降低开关损耗。这意味着开关频率不恒定:在负载较轻时,第一个最小漏电压来得比较早。以往的设计总是在第一个最小值时导通,轻负载下的效率随开关频率的增加而降低,抵消了导通电压较低的优点。在飞兆半导体的e-Series™ 准谐振电源开关中,控制器只需等待最短时间 (从而设置频率上限),然后在下一个最小值时导通 MOSFET。

    其它拓扑都采用零电压开关技术。在这种情况下,上面公式里的电压VDS将从一般约400V的总线电压降至1V左右,这有效地消除了导通开关损耗。通过让电流反向经体二极管流过MOSFET,再导通MOSFET,可实现零电压开关。二极管的压降一般约为1V。

    谐振转换器通过产生滞后于电压波形相位的正弦电流波形来实现零电压开关,而这需要在谐振网络上加载方波电压,该电压的基频分量促使正弦电流流动 (更高阶分量一般可忽略)。通过谐振,电流滞后于电压,从而实现零电压开关。谐振网络的输出通过整流提供DC输出电压,最常见的谐振网络由一个带特殊磁化电感的变压器、一个额外的电感和一个电容构成,故名曰LLC。

    非对称半桥转换器则是通过软开关技术来实现零电压开关。这里,桥产生的电压为矩形波,占空比远低于50%。在把这个电压加载到变压器上之前,需要一个耦合电容来消除其中的DC分量,而该电容还作为额外的能量存储单元。当两个MOSFET都被关断时,变压器的漏电感中的能量促使半桥的电压极性反转。这种电压摆幅最终被突然出现初级电流的相关MOSFET体二极管钳制。

    选择标准

    这些能源优化方面的成果带来了出色的效率。对于75W/24V的电源,准谐振转换器设计可以获得超过88%的 效率。利用同步整流 (加上额外的模拟控制器和一个PFC前端),更有可能在90W/19V电源下把效率提高到90% 以上。在该功率级,虽然LLC谐振和非对称半桥转换器可获得更高的效率,但由于这两种方案的实现成本较高,所以这个功率范围普遍采用准谐振转换器。对于从1W辅助电源到30W机顶盒电源乃至50W的工业电源的应用范围,e-Series集成式电源开关系列都十分有效。在此功率级之上,建议使用带外部MOSFET的FAN6300准谐振控制器,它可以提供处理超高系统输入电压的额外灵活性,此外,由于外部MOSFET的选择范围广泛而有助于优化性价比。

    准谐振反激式拓扑使用一个低端MOSFET;而另外两种拓扑在一个半桥结构中需要两个MOSFET。因此,在功率级较低时,准谐振反激式是最具成本优势的拓扑。在功率级较高时,变压器的尺寸增加,效率和功率密度下降,这时往往考虑采用两种零电压开关拓扑。

    系统设计会受到四个因素所影响:分别是输入电压范围、输出电压、是否易于实现同步整流,以及漏电感的实现。

    图2比较了两种拓扑的增益曲线。为便于说明,我们假设需要支持的输入电压为110V 和 220V。对于非对称半桥拓扑,这不是问题。在我们设定的工作条件下,220V 和110V 时其增益分别为0.2和0.4 。在220V时,效率较低,因为磁化DC电流随占空比减小而增大。对于LLC谐振转换器来说,最大增益为1.2,要注意的是满负载曲线非常接近谐振。0.6的增益将导致频率极高,系统性能很差。总言之,LLC 转换器不适合于较宽的工作范围。通过对漏电感进行外部调节,LLC 转换器可以用于欧洲的输入范围,但代价是磁化电流较大;若采用了PFC前端,它的工作最佳。而非对称半桥结构在输入端带有PFC级,因此电路可工作在很宽的输入电压范围上。

 

图2:非对称半桥和LLC转换器的增益曲线

    对于24V以上的输出电压,我们建议采用LLC谐振转换器。高的输出二极管电压会致使非对称半桥转换器效率降低,因为额定电压较高的二极管,其正向压降也较高。在24V以下,非对称半桥转换器则是很好的选择。因为这时LLC转换器的输出电容纹波电流要大得多,其随输出电压降低而变大,从而增加解决方案的成本和尺寸。

    上述两种拓扑都可以采用同步整流。对非对称半桥拓扑,这实现起来非常简单 (参见飞兆半导体应用说明AN-4153)。对LLC控制器,需要一个特殊的模拟电路来检测流入MOSFET的电流,如果开关频率被限制为第二个谐振频率 (图2中的100kHz),该技术是比较简单的。

    最后,两种设计都依赖变压器的漏电感:在LLC转换器中用来控制增益曲线 (图2);而在非对称半桥转换器则用以确保轻载下的软开关。对于大多数应用,我们都建议采用两个单独的电感来达到此目的。漏电感是变压器中不容易控制的一个参数。此外,要实现一个不同寻常的漏电感,需要一个非标准的线圈管,这增加了成本。对于非对称半桥结构,如果采用标准变压器,谐振开关速度至少是开关频率的10倍,从而产生更大的损耗。总之,对LLC转换器而言,建议再采用一个普通铁氧体电感;而对非对称半桥转换器,建议只使用一个高频铁氧体电感。

    图3显示了非对称半桥转换器的电路示意图。该图非常类似于LLC谐振转换器,只有一点不同:LLC谐振转换器不需要输出电感,以及非对称半桥控制器需要设置频率而非PWM控制。

 

图3:基于FSFA2100的非对称半桥转换器

    192W/24V 非对称半桥转换器的效率在 93% 左右。AN-4153 360W/12V 倍流版在额定负载为20%-100% 时也有超过93%的满负载效率。

    在包含 PFC 前端的 200W/48V 电源条件下,LLC 谐振转换器的效率在 93% 左右。通过同步整流,在该功率级下可以把效率提升至95%-96%。

关键字:节能式  电源拓扑  电源管理 编辑:探路者 引用地址:为节能式电源选择正确的拓扑

上一篇:基于电流型PWM整流器的电子模拟负载系统研究
下一篇:利用比较器电路方便地转换电平和极性

推荐阅读最新更新时间:2023-10-18 16:30

PDPM开幕在即 电信天翼、联通华盛亮相
7月16日,第五届便携式产品设计与电源管理技术研讨会(PDPM2009)将于深圳马可波罗酒店盛大召开,据主办方创意时代介绍,本届大会除了ST、Infineon、NS、Tyco、Murata等厂商将就便携设计和电源管理技术进行讨论外,还特别邀请了电信天翼、联通华盛两大运营商以及VIA、ARM和iSuppli就上网本等市场和技术发展趋势发表看法,来自TI的演讲嘉宾也将特别介绍上网本电源管理系统的设计方案。 PDPM纵论上网本 电信联通联袂出席 上网本无疑是经济危机中最耀眼的明星产品,经过连续两年的超高幅增长之后,上网本市场能否保持高速增长?还是会随着经济复苏逐步没落?PDPM2009上,iSuppli将带来最新的上
[手机便携]
LED照明的电源拓扑结构
 引言   随着 LED 的生产成本下降,其使用愈发普遍,所涵盖的应用范围从手持终端设备到车载,再到建筑 照明 。LED的高可靠性(使用寿命超过50,000个小时)、较高的效率( 120流明/瓦)以及近乎瞬时的响应能力使其成为极具吸引力的光源。与白炽灯泡200mS的响应时间相比,LED会在短短5ns响应时间内发光。因此,目前它们已在汽车行业的刹车灯中得到广泛采用。   驱动LED   驱动LED并非没有挑战。可调的亮度需要用恒定电流来驱动LED,并且无论输入电压如何都必须要保持该电流的恒定。这与仅仅将白炽灯泡连接到电池来为其供电相比更具有挑战性。   LED具有类似于二极管的正向V-I特性。在低于LED开启阈值( 白光LED 的开
[电源管理]
LED照明的<font color='red'>电源拓扑</font>结构
基于CC1101的分布节能测控网络设计
引言 CC1101是TI公司生产的一种单片、低成本的UHF频段无线收发器,基于IEEE 802.15.4标准开发,主要应用领域为低功耗无线测控。芯片具有无线电唤醒(WOR)、数据包处理、数据缓冲、突发数据传输、清晰信道评估、链接质量指示等功能,内部的参数寄存器和数据传输FIFO可通过SPI接口控制,所需的周边器件很少,使用简单。受限于发射功率和天线结构,CC1101的视距传输距离一般在400~800 m范围内,超出此距离范围则必须由中继设备对无线信号进行放大、转发。本文设计的一种分布式无线测控系统通过局域网对中继设备进行互连,大大降低了系统的无线通信协议复杂性,同时达到了使用无线通信时伴随的低功耗设计要求,具备很强的实际工程应
[测试测量]
基于CC1101的分布<font color='red'>式</font><font color='red'>节能</font>测控网络设计
完整易用的电源管理和转换IC
   电源管理 方案   电源管理是当今的1个热门技术。电源管理包括电源监控、定序、容限等(图1)。电源管理需要新的方法。图2示出ZilkerLabs公司的方案。      表1 电源模块BoM比较   电源模块BoM的Zilker方案与模拟方案的比较见表1。   从表1可见,Zilker方案的显著优点是:较大的电流能力、较少的元件、更多的性能。      图1 电源管理框图    Zilker Labs 的Digital-DCTM技术的特点是:   ⊙电源转换精确控制;   ⊙集成电源管理;   ⊙容易使用,不需要编程;   ⊙小的占位面积,
[安防电子]
完整易用的<font color='red'>电源管理</font>和转换IC
安森美半导体新电源管理IC为便携应用提供多通道工作和低静态电流
     集成式LDO稳压器提升电源能效,同时I²C编程让智能手机、平板电脑、相机和GPS应用达到最优化的整体设计弹性      2012年10月8日 – 应用于高能效电子产品的首要高性能硅方案供应商安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)推出两款新电源管理IC(PMIC),为采用电池供电系统之便携式电子设备,例如智能手机、平板电脑、数码相机、GPS及其他便携电子产品提供优化设计。NCP6924和NCP6914采用最新的电源管理技术,提供优化的系统能效并延长电池寿命。      NCP6924集成了两个高能效800毫安(mA), 3兆赫(MHz) DC-DC降压式转换器和四个低压降(
[电源管理]
安森美半导体新<font color='red'>电源管理</font>IC为便携<font color='red'>式</font>应用提供多通道工作和低静态电流
电源管理芯片厂商芯龙半导体宣布全线产品涨价了!
5月6日,上海芯龙半导体技术股份有限公司(以下简称“芯龙半导体”)发布产品价格调整通知称,由于产品的上游原材料等成本持续上涨,且产能紧张、投产周期延长,导致我司产品成本多次大幅上升。为了更好的服务客户,确保产品的持续供应,缓解采购成本多次上升带来的压力,经过谨慎评估考虑,根据上游供应商价格上调的实际情况,本着共同发展,合作共赢的原则,我司决定对全线产品价格进行调整。 资料显示,上海芯龙半导体技术股份有限公司是一家专业从事电源管理类模拟集成电路开发的设计公司;芯龙的核心研发和管理团队由一批来自业界半导体设计公司的资深专家组成;芯龙将业界先进的设计技术与亚太地区的本土优势产业链相结合,服务全球市场,为客户提供快速、高效、高性价比的
[手机便携]
<font color='red'>电源管理</font>芯片厂商芯龙半导体宣布全线产品涨价了!
有关电源管理的一些看法
  能量收集的概念已经出现超过 10 年了,然而在现实环境中,由环境能源供电的系统一直很笨重、复杂和昂贵。不过,有些市场已经成功地采用了能量收集方法,如交通运输基础设施、无线医疗设备、轮胎压力检测和楼宇自动化市场。尤其是在楼宇自动化系统中,诸如占位传感器、自动调温器甚至光控开关等,以前安装时通常使用的电源或控制配线,现在已经不需要了,取而代之的是,它们采用了局部能量收集系统。   能量收集系统的一个主要应用是楼宇自动化系统中的无线传感器。为方便说明,我们考虑一下美国能源使用的分布情况。建筑物每年都是能源生产的头号用户,约占总能耗的 38%,紧随其后的是交通运输和工业领域,各占总能耗的 28%。此外,建筑物可以进一步分成商用建筑和民
[电源管理]
有关<font color='red'>电源管理</font>的一些看法
IM2605 type-c电源管理芯片设计原理图
IM2605集成了一个同步4开关Buck-Boost变换器,在输入电压小于或大于输出电压时保持输出电压调节。当输入电压足够大于输出电压时,它作为Buck变换器工作,并随着输入电压接近输出逐渐过渡到Buck-Boost模式。它还具有内部固定软启动功能,并提供保护功能包括输入UVLO、OCP、过载保护(OLP)、OVP和热关机。此外,它还具有可选择的FCCM或DCM操作,用于轻负载。IM2605还控制两个低N-MOSFET作为负载开关,有助于降低BOM成本。采用微处理器,可实现电源交换时的输入体电容放电。 IM2605应用 TYPEC拓展坞/扩展底座、USB电源传输、计算机 外围设备
[嵌入式]
IM2605 type-c<font color='red'>电源管理</font>芯片设计原理图
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved