笔记本电脑电池充电控制器bq24700应用

最新更新时间:2012-03-15来源: 电源在线网关键字:动态充电管理  降压变换器  过放电保护 手机看文章 扫描二维码
随时随地手机看文章
1 引言

  bq24700是专为笔记本电脑电池组设计的充电控制芯片。该芯片特有的动态充电管理功能,在最短时间内完成充电。充电器的主电路为降压变换器。PWM控制器的固定频率为300kHz,充电电流精度为±4%,充电电压精度为±0.4%,特别适合锂离子电池组充电。对锂离子电池组充电时,用内部1.25V±0.5%基准电压设置充电电压,对其他电池组充电时,用外部基准电压来设置充电电压。该器件可实时检测电池组状态,并自动选择交流适配器供电或电池组供电。电池组供电时,bq24700检测电池组电量,并在电量不足时发出报警信号。

2  内部框图及引脚功能

  bq24700采用24脚TSSOP封装,管脚排列如图1所示。内部框图如图2所示。各管脚功能如下:


图1  bq24700管脚排列

  脚1为交流适配器输出状态检测端。当该脚电压低于1.2V时,bq24700选择电池组为系统供电。
  脚2为交流适配器输出状态指示。脚1电压高于1.2V时,该脚输出高电平。
  脚3为系统供电选择。该脚为高电平时,交流适配器供电,该脚为低电平时,电池组供电。
  脚4为电池组状态检测。该脚电压低于1.2V时,电池组电量耗尽,该脚电压低于1.0V时,bq24700判定电池未装。
  脚5为电池组充电电流设置端。
  脚6为交流适配器输出电流设置端。当系统电流与电池组充电电流大于设置值时,bq24700进入动态充电模式。
  脚7为5.0±0.6%基准电压。该基准电压给外电路供电,该脚应外接3.3μF电容。
  脚8为充电使能端。
  脚9为内部基准电压关断端。
  脚10为PWM比较器反相输入端。
  脚11、12为交流适配器输出电流检测误差放大器的反相、同相输入端。
  脚13为电池组充电电压反馈输入端。
  脚14为电池组充电电流误差放大器输出端。
  脚15、16为电池组充电电流检测误差放大器的反相、同相输入端。
  脚17为信号地。
  脚18为系统电压检测输入端。
  脚19为报警输出端。
  脚20为外部MOSFETS驱动电压设置端。
  脚21为PWM驱动输出。
  脚22为集成电路电源端。
  脚23为电池组供电选择MOSFET驱动输出。
  脚24为交流适配器供电选择MOSFET驱动输出。


图2  bq24700内部框图


[page]3  基本工作原理

  bq24700典型应用电路如图3所示:


图3  bq24700典型应用


3.1动态充电管理

  动态充电管理可以充分利用交流适配器的输出电流,在最短时间内完成充电。电池充电电流IBAT等于适配器输出电流IADPT和系统电流ISYS之差,即:IBAT=IADPT-ISYS ,系统所需电流减小时,bq24700增加电池组的充电电流,如图4所示。这样可使交流适配器的输出功率维持稳定。


图4 动态充电管理


3.2交流适配器状态检测

  交流适配器输出电压,经电阻分压后接到管脚1。该脚电压低于1.2V时,bq24700判定交流适配器输出功率不足,系统切换至电池组供电, 并且进入bq24700休眠模式。
  交流适配器输出电压低于18V时,检测点取在交流适配器输出二极管的阳极。交流适配器的输出电压大于18V时,检测点应在适配器输出二极管的阴极,这样可确保交流适配器掉电后,管脚SRN和SRP上的电压在安全范围内。

3.3电池组充电

  bq24700通过检测电池组电压、电池组电流、交流适配器输出电流三个参数,完成充电电流的闭环控制。串联在交流适配器输出回路和电池组充电回路中的电阻,分别给两个误差放大器提供检测数据,电池组电压经分压后给第三个误差放大器提供检测数据。只有在管脚ENABLE输出高电平时,bq24700才对电池组充电。
  电池组充电终止电压、电池组充电电流和交流适配器输出电流都可以通过分立器件设置,也可通过DAC接口由键盘设定。bq24700的充电电路为降压变换器,开关频率固定为300kHz,外接P沟道MOSFET,如图5所示。


图5 PWM降压变换器


[page]3.4 PWM控制器及软启动

  bq24700三个误差放大器的输出都连接到COMP端,该端输出和内部300kHz锯齿波比较,完成脉宽调制,再经转换电路输出相应占空比的驱动信号,驱动外部P沟道MOSFET。
  为了确保外部MOSFET的输出电压在正常范围之内,bq24700内部具有驱动电压转换电路,当UCC≤15V时,驱动电压等于UCC,当UCC>15V时,驱动电压为0.5UCC。
  软启动可以保证各功能电路按顺序启动。PWM比较器关断时,COMP脚接地,同时内部100μA电流源关断。当PWM比较器使能时,COMP脚释放,100μA电流源开始对COMP脚外接电容充电,随着COMP脚电压上升,PWM比较器的占空比增大,bq24700实现软启动。

3.5 充电终止电压设置

  bq24700通过BATSET脚设置充电终止电压,可使用和不使用内部1.25V基准电压两种方式(如图6)。电池组电压经分压后接到误差放大器,为了精确地对锂离子电池组充电,BATSET的外接分压电阻应当很准确。当BATSET脚电压低于0.25V时,内部1.25V基准电压接入到误差放大器。当BATSET脚电压低于0.25V时,1.25V基准电压从误差放大器的输入端断开。不用1.25V基准电压时, BATSET脚的电压不能低于1.0V。


图6 充电终止电压设置


3.6 电池组充电电流设置

  bq24700通过SRSET脚设置充电电流,设置电压可由5V基准电压分压得到。充电电流IBAT和设置电压USRSET的关系为:

  设置电压最大值为2.5V。

3.7 交流适配器输出电流设置

  交流适配器输出电流通过ACSET脚设置,设置电压可由5V基准电压分压得到。交流适配器输出电流IADPT和设置电压UACSET的关系为:


3.8 系统供电选择

  交流适配器或电池组任意一路供电电源发生故障时,bq24700可以自动切换到另一路电源为系统供电。同时允许在不断开交流适配器的情况下,手动选择电池组为系统供电。切换开关应选择低导通电阻的P沟道MOSFET,以降低损耗,延长电池组供电时间。无论是手动切换还是自动切换,在电池组供电时,交流适配器都停止对电池组充电,选择电路如图7所示。


图7  系统供电选择

  当适配器输出正常时,ACPRES脚输出高电平,反之则输出低电平。交流适配器输出电压经分压后连接到ACDET脚,同内部基准电压比较,当ACDET脚电压低于内部基准电压时,无论交流适配器是否还有输出电压,bq24700都判定交流适配器掉电。ACPRES脚翻转为低电平,同时ACDRV脚输出高电平,BATDRV输出低电平,ALARM输出高电平,bq24700选择电池组为系统供电。当交流适配器输出电压正常后,ACSEL脚为高电平,交流适配器为系统供电,如果该脚电压为低电平,电池组仍为系统供电。如果切换不成功, ALARM脚输出报警信号。
  交流适配器输出电压正常,但ACSEL为低电平时,系统由电池组供电。电池组供电时,适配器供电的MOSFET关断,电池组供电的MOSFET开通之前,系统先检测VS脚的电压,如果交流适配器供电MOSFET短路,该管脚电压高于BATP脚的电压,bq24700将不开通电池组供电的MOSFET,这样可以保护电池组。如果VS接地,该保护功能被取消。

3.9 电池过放电检测

  电池组电压经分压后接入BATDEP脚,与内部1.22V基准电压比较,当BATDEP脚电压接近1.22V时,bq24700判定电池电量耗尽,发出报警信号,ALARM输出高电平。如果电池过放电,同时交流适配器输出电压正常,则bq24700自动切换到交流适配器供电。

4 结语

  以bq24700为核心的笔记本电池充电管理方案,具有完善的功能、稳定的性能和较低的成本。该充电器既应用于笔记本电脑,也可应用于其他便携设备。
关键字:动态充电管理  降压变换器  过放电保护 编辑:冰封 引用地址:笔记本电脑电池充电控制器bq24700应用

上一篇:开关型锂离子电池充电控制器MAX745应用
下一篇:新型太阳能电池最大效率可增加25%

推荐阅读最新更新时间:2023-10-18 16:31

汽车电子自适应频率调制DC/DC降压变换器的开发策略
目前,高频、高效的DC/DC转换器在汽车电子系统中的应用越来越多。高开关频率可以使用较小的功率电感和输出滤波电容,从而减小系统的体积,提高紧凑性并降低成本。高工作效率可以延长汽车电池的使用时间,降低系统功耗,从而减少发热量,优化系统的热设计并进一步提高可靠性。但高开关频率会降低系统的工作效率。因此设计汽车电子应用的DC/DC降压变换器时必须在开关频率和工作效率之间作一些折衷处理。 DC/DC降压变换器的最高开关频率受限于DC/DC的最高输入电压、最低输出电压和功率管的最小开启时间,理论极限值可以由下式计算:   公式1 其中fSW(MAX)为最大的开关频率,tON(MIN)为开关管要求的最小导通时间,VD是续
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved