基于LLC的大功率智能充电器设计方案

最新更新时间:2012-04-12来源: 电源网关键字:智能充电器  谐振电路  LLC 手机看文章 扫描二维码
随时随地手机看文章
     阐述半桥LLC 谐振电路的工作原理和特点,并且用MATLAB 对LLC 谐振进行了仿真,分析了其工作区域。 在此基础上,运用NCP1653 提供PFC 电路,NCP1396 (压控震荡器)为电路提供保护功能,单片机芯片S3F84K4 通过编程为电路提供智能控制,设计了一款大功率智能充电器。通过测试,该款充电器能很好的实现充电功能。

  0 引 言

  充电器与人们的日常生活密切相关,充电器充电性能的好坏与被充电池的使用寿命、充电效率等息息相关。由于外界温度变化,电网电压波动,因而大大降低了充电器充电性能的稳定性,这就需要有一种能自我调节的系统,遇到外界的干扰能实时做出回应,保证充电的稳定性,不损坏被充电的电池。智能控制在此能提供一种很好的解决方案。电源行业已经开始在其产品中运用智能控制,通过单片机的编程对过压、过流情况做出判断,为电池提供保护。 LLC 谐振变换器在充电器的运用也是越来越多,LLC 谐振变换器的拓扑本身具有一些优越的性能,可以实现原边开关管在全负载下的零电压软开关( ZVS ( Zero VoltageSwitch) ) ,副边整流二极管电压应力低,因此高输出电压的情况下可以实现较高的效率等。 这使得LLC 谐振变换器特别适合高输出电压的应用场合。 今后电源的发展方向是用单片机来完成所有功能,包括:脉宽调控、反馈、过压过流保护等等。

  下面介绍的就是一款应比亚迪公司(B YD) 的要求,设计出的一种基于单片机的智能充电器。该充电器对充电过程进行智能控制,系统中的管理电路还具有保护功能,可防止电池的过充和过放对电池造成损坏。

  1 LLC 谐振变换器

  本充电器设计中要考虑整流滤波、能量转换,电路保护、软件设计等。 而LLC 谐振变换器是能量转换中最重要的部分,关系到充电器性能的好坏。 下面着重介绍其基本结构、数学模型及时序分析。

  1. 1 LLC 谐振变换器的基本结构

  图1 所示为LLC 谐振变换器的原理图。 串联谐振电感Lr 、串联谐振电容Cr 和并联谐振电感Lm ,构成LLC 谐振网络, Cr 也起到隔直作用[3 ] 。 在变压器次级,整流二极管直接连接到输出电容Co上。

  

  图1 LLC 谐振变换器的原理图

  当发生谐振时,LC 的本征谐振频率为:

  

  当Lr , Cr 和Lm发生谐振时,LLC 本征谐振频率为:

  

  由式(1) 、(2) 可知f1 》 f2 ,当负载RL 变化时,可以调节开关(Q1 、Q2 ) 频率在f1 和f2 间变化,使品质因数达到最大。 利用这种特性,可以方便地实现脉冲频率模式PFM( Pul se Frequency Model),品质因数表示如下:

  

  LLC 谐振网络需要两个磁性元件Lr 和Lm。

  然而,考虑到高频变压器实际结构,可以把磁性元件Lr 和Lm 集成在一个变压器内,利用变压器的漏感作为Lr ,利用变压器的磁化电感作为Lm , 这样一来,可以大大减少磁性元件数目。 在设计时,只要重点设计变压器的漏感与变压器磁化电感即可。因此, 为增加漏感, 需要在变压器中加入适当的气隙,并且控制变压器原、副边的绕线方式可以提高品质因素。

        1. 2 LLC 的数学模型分析

  通过上述分析,由图1 的LLC 谐振变换器的原理图得其LLC 等效模型如图2 所示。

  

  图2  LLC 原理图的等效模型图

  电压传递函数为:

  

  其中:

  

  Q 为品质因数。

利用MA TIAB 对该模型进行仿真,可以初步分析出其工作特性如图3 所示。 其中f s 为启动频率( Start Frequency) f r 为谐振频率( ResonantFrequency)。

  

  图3 LLC 谐振工作特性。

  从图3 中可以看到,在整个频率围内,既有降压的工作区域(M 《 1) ,也有升压的工作区域( M 》1) ,此LLC 谐振有着较大的应用范围。 在轻负载时,工作频率逐渐升高, 工作在降压区域内; 而在重负载时, 工作频率逐渐降低, 工作在升压区域内。由图3 可知, 串联谐振的工作区域应该为f s / f r 》 1 ,才能工作在ZVS 的状态。 在不同负载下,为获得ZVS 的工作条件, 只要使之工作在f s / f r 》 1的右侧即可。 而LLC 谐振不仅仅局限于f s / f r 》 1 的区域,在某些负载下可以工作在f s / f r 《 1区域。 同样可以获得零电压转换的工作状况。并且与串联谐振相比,在不同负载时的频率变化范围更小。

        1. 3 LLC 谐振变换器的时序分析

  LLC 谐振变换器由两个主开关管Q1 和Q2 构成,其驱动信号是占空比固定为0. 5 的互补驱动信号。 为了保证原边功率MOS 管的ZVS , 副边二极管的ZCS(Zero Current Switch) 都可以实现,工作频率在f 2 《 f ≤f 1 时,其工作波形图如图4 所示。 从图中可以看出LLC 变换器工作在半个周期内可以分为三个工作模式。

  模式1 (t0 - t1):两个开关管(Q1 、Q2 ) 都截止,Q1 的反向二级管导通续流, Lr 上的电流逐渐减小,变压器产生感生电流,向负载供电。 反向二极管的导通将Q1两端的电压钳位在零。

  模式2 (t1 - t2):Lr 上的电流在t1 时刻减小到零,Q1 在此时刻导通, Lr 上的电流反向增大, 达到峰值后减小。 Lm 上的电流先减小,然后反向增加。

  可以看出,t1 时刻由于Q1 的反向二极管的钳位作用,Q1 的导通电压为零。 此阶段只有Lr 和Cr 进行谐振。

  

  图4 工作时序波形图

  模式3 (t2 - t3):Lm 上的电流在t2 时刻与Lr上的电流相等,此时流过变压器的电流为零,负载与变压器被隔离开。Q1 在此时刻关断,Q2的反向二极管导通续流。 此阶段Lm 也加入到谐振部分, 与Lr 和Cr 串联组成谐振回路。

  在下半个周期中, 电路的工作与上半个周期刚刚相似,只是方向相反。整个周期的电路工作波形:在上半个周期中,开关管Q1 为零电压导通,而Q1 在t3 时刻的关断电流im 很小; 在下半个周期中,开关管Q2 为零电压导通,而Q2 在t6 时刻的关断电流im 很小,所以Q1 、Q2 工作时的开关损耗很小。

  2 充电器硬件设计

  经过上面的分析,设计中采用电流、电压负反馈的方法来达到恒流、恒压充电的目的,充电器硬件原理框图如图5 所示。

  

  图5 充电器的硬件原理框图

  交流电经过滤波整流后,流向NCP1653,由其提供PFC(Power Factor Correction)操作,NCP1653是一款连续导通型(CCM) 的功率因数校正( PFC) 升压式的上升控制电路,它的外围元器件数量很少,有效地减少了升压电感的体积, 减小了功率MOS管的电流应力,从而降低了成本,且极大地简化了CCM 型的PFC 的操作,它还集成了高可靠的保护功能。 NCP1396 电路为整个硬件电路提供保护(包括有反馈环路失效侦测、快速与低速事件输入,以及可以避免在低输入电压下工作的电源电压过低侦测等),NCP1396 的独特架构包括一个500 kHz 的压控振荡器,由于在谐振电路结构中避开谐振尖峰相当重要,因此为了将转换器安排在正确的工作区,NCP1396 内置了可调整且精确的最低开关频率,通过专有高电压技术支持。 应用S3F84K4 单片机实现智能充电器控制。

3 软件设计

  为满足充电要求, 该充电器软件设计除了完成充放电控制外,还具有过流保护、过压保护、过温保护、短路报警等功能模块。主程序流程图如图6 所示。

  

  图6 主程序流程图。

  程序开始执行后, 首先进行初始化并检测电池电压、电流、温度等信息是否正常。 如正常则进入下一步。 否则报警并关闭电路。如果电池电压在充电终止电压和放电终止电压之间, 说明电池既可充电也可放电。 此时电路将判断接上充电机还是接上负载。以进行相应的充电和放电。 如果两者都没有接则循环检测过程。 若电池电压已经到达充电终止电压。则等待负载的接入进行放电;同样若电池电压己经达到放电终止电压,则等待充电器的接入以进行充电。在整个过程中,该电路将始终实时检测电池信息,若有异常情况发生,则立即利用中断信号终止正在进行的充电或者放电过程,关断充放电回路,同时进行报警并提示报警原因。

  4 测试结果

  本充电器的各项指标如下:

  (1) 输入电流:50/ 60 Hz。

  (2) AC/ DC 输出电压48 :V , AC/ DC 输出电流:5. 0 A。

  (3) 恒流充电电流:4. 5 A。

  (4) 恒压充电电压:45 V (AC)。

  (5) 环境温度: - 5~45 ℃。

  经分析, 按上述设计和分析结果, 最后选定LLC 的参数Cr = 0. 043 055μF,Lr = 72. 636 09μH,Lm = 435. 816 5μH。

  本智能充电器经测试,充电保护措施可靠,充电状态准确,充电时间约为6 h ,如果需要进一步缩短充电时间,只需在初始化时设定更大的充电电流即可。 因为采用PWM 控制器,所以,充电效率可以达到92 %以上,最低时在85 %左右。根据实际需要,要想达到理想的充电效率,对充器件做进一步的精确要求。

  5 结 语

  在智能充电器控制系统设计过程中,主要侧重点是保证充电器对充电电池电压的精确控制,设计中元器件的选型也都是围绕着这个重点来完成的经过实验电路的实际测试,由电源变压器、整流电路、滤波电路及稳压电路构成AC/ DC 变换电路。 在NCP1653 、NCP1396 与S3F84 K4 的配合控制下可实现很高的系统精度。
关键字:智能充电器  谐振电路  LLC 编辑:探路者 引用地址:基于LLC的大功率智能充电器设计方案

上一篇:锂聚合物电池的太阳能路灯控制器设计
下一篇:锂离子电池修复仪的设计原理及制作过程

推荐阅读最新更新时间:2023-10-18 16:37

如何利用LLC谐振电路改进光伏并网逆变器
  光伏发电系统是利用电子组件将太阳能转化为电能,逆变器作为整个系统的核心,通常又分为隔离型和非隔离型两大类,如果将两种类型的逆变器优点结合,对整个光伏发电系统的效率、可靠性、使用寿命的提高以及降低成本都是至关重要的。   本文主要介绍一种利用LLC谐振电路进行高频光伏并网逆变器设计,将隔离型和非隔离型的优点结合,既减轻了重量、缩小了体积、降低了成本,又提高了电能质量和安全性。而且由于使用LLC谐振电路能够实现DC-DC级功率器件的软开关,可以大大降低功率器件的开关损耗,因此能显着提高整个系统的转换效率和器件的使用寿命。    光伏并网逆变器结构及基本原理    系统设计结构   采用LLC隔离的光伏并网逆变器结构如图1所示
[电源管理]
如何利用<font color='red'>LLC</font><font color='red'>谐振</font><font color='red'>电路</font>改进光伏并网逆变器
基于XC164CM的新型快速无损智能充电器设计
当前的快速充电器不能遵循蓄电池自身的特性进行快速充电,致使析气多,温升大,缩短电池的使用寿命。针对上述问题,创新性地提出应用ANFIS对电池的可接受电流进行预测,保证电池在最佳充电速率下快速无损充电。详细介绍以单片机XC164CM为核心,完成新型快速无损智能充电器的设计,具有电流检测和控制等功能。样机测试表明,充电过程中析气少,温升低,充电效率高,解决了充电速率与电池寿命之间的矛盾。   根据马斯定理,对电池进行快速无损充电,充电电流应等于或接近于当前电池所能接受的电流大小,以保证析气率最低,减少快速充电过程中对电池的损害。近来,先进的智能控制技术被引入到快速充电技术中,用于停充电控制或充电模式选择,提高控制精度和充电效率;但没有
[电源管理]
基于XC164CM的新型快速无损<font color='red'>智能充电器</font>设计
基于8xC749单片机的电动自行车智能充电器的设计与实现
    摘要: 介绍了PHILIPS公司的8xC749微处理器为核心的智能充电控制器的控制原理,讨论充电器的硬件结构和各主要组成部分的设计思想,并介绍智能充电器中的两种新技术:均衡充电和脉冲充电。结合铅酸电池对充电器的控制算法进行探讨。     关键词: 充电器  智能控制器  均衡充电  脉冲充电  8xC749单片机     随着经济的发展,越来越多的电器走进人们的日常生活,家庭使用的小容量蓄电池的比例将会逐渐增加。因此,研究如何延长蓄电池的寿命,提高蓄电池的使用效率,并设计、生产出高质量、高效率、符合家庭使用要求的充电器,有着十分重要的意义。     评估蓄电池的优劣有很多指
[工业控制]
Allegro MicroSystems,LLC发布新型全集成精确电流传感器IC
    新产品适用于需要检测高达400A电流的应用。   美国马萨诸塞州伍斯特市 – Allegro MicroSystems,LLC宣布推出全新的电流传感器系列IC ACS772/73,能够为AC或DC电流检测提供经济而准确的解决方案。新产品具有200 kHz带宽,是电机控制、负载检测和管理、电源和DC-DC转换器控制以及逆变器控制等应用的理想选择。ACS772/73具备2.5μs的响应时间,可在安全关键型应用中实现过流故障检测。该系列传感器可应用于汽车和工业等领域,在其整个生命周期内的精度为±2.1%。两个电流传感器IC分别采用5V(ACS772)和3.3V(ACS773)单电源供电。   ACS772/73器件包
[电源管理]
Allegro MicroSystems,LLC发布集成有稳压器的全新三相MOSFET驱动器
美国马萨诸塞州伍斯特市 – Allegro MicroSystems,LLC宣布推出一款全新的集成有低压差(LDO)稳压器的三相MOSFET驱动器IC A4919,这款产品专为范围广泛的工业应用而设计,能够提供5.0V或3.3V电压。A4919在与微处理器端接时,可以通过块(梯形)、正弦波或矢量换向来进行控制。A4919的设计定位是商业和工业市场中简单而直接的控制栅极驱动器,能够为外设或微处理器提供LDO,并在换向时具有完全的灵活性。 A4919具有一个独特的电荷泵稳压器,在电源电压低至7V时也能够提供完整的( 10V)栅极驱动,并可在电源电压低至5.5V时允许A4919也可具有较低的栅极驱动。A4919中的自举电容用于提供
[电源管理]
Allegro MicroSystems,<font color='red'>LLC</font>发布集成有稳压器的全新三相MOSFET驱动器
LLC谐振型DC/DC变换器的分析与最佳设计
LLC谐振型DC/DC变换器有许多优点: 开关管 的频率可工作在欠谐振和过谐振状态;在输出负载和输入 电压 较大变化时可利用相对较小的频率调节来保证输出电压恒定,而且在整个调节范围内都能保证功率器件 软开关 。因此,它是计算机、通信、薄型电视机 开关电源 中最具吸引力的拓扑结构。 LLC谐振型DC/DC变换器工作在过谐振模式时或接近谐振频率时,整流 二极管 的 电流 工作在CCM(连续状态),谐振电流的波形接近正弦波,对这种状况的变换器的特性分析已有很多文献做了报道 。而变换器实际工作在DCM(不连续状态)、CCM两个状态下,特别在输入电压变化较宽的场合下,工作频率更是远离谐振频率,此时整流二极管的电流
[电源管理]
<font color='red'>LLC</font><font color='red'>谐振</font>型DC/DC变换器的分析与最佳设计
法雷奥与Ellcie Healthy签订合作协议 研发驾驶用智能互联眼镜
据外媒报道,法雷奥于2018年3月23日宣布,该公司与初创公司Ellcie Healthy签订合作协议,旨在加速研发驾驶用智能互联眼镜(smart connected eyeglasses)。 法雷奥在该领域非常活跃,正在研发智能防眩光眼镜(smart anti-glare glasses),可与车头灯实现同步效应。该公司正与Ellcie Healthy开展合作,从而获取该初创公司在智能眼镜方面的专业技术及一体式传感器(integrated sensors)。 两家公司的技术团队将携手合作,将法雷奥在互联车辆领域的专业技术与Ellcie Healthy在智能眼镜领域内的专业知识相结合,该合作旨在加速新款汽车应用的研发进程,提升道路
[汽车电子]
一种具有自限流功能的LLC谐振变流器拓扑
一、引言 在发电厂和变电站中,供给二次回路的直流电源称为电力操作电源。电力操作电源主要用于向控制、保护、信号、自动装置回路以及操动机械和调节机械的传动机构供电,同时还作为独立的事故照明电源。目前发电厂和变电站普遍应用的操作电源是硅整流型操作电源(又称相控式操作电源),它采用硅整流型充电装置对蓄电池充电,由蓄电池向二次回路提供不间断的直流电源。但这种电源存在许多缺陷,如充电装置效率差、稳压稳流精度低、纹波大、电池保持容量低、寿命短等。随着电力电子技术的发展,传统的硅整流型电源正在逐渐被高频开关电源取代。高频开关电源具有体积小、重量轻、效率高、电气性能好等许多优点。此外,由于高频开关电源采用模块化结构和n+1备份方式,使电源装
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved