摘要:
保安电源是为保证机组在出现全厂停电时能够顺利停机设置的,其主要为汽轮机、给水泵、磨煤机、风机润滑系统以及控制系统、不间断电源(UPS)、动力和控制直流系统等提供电源。目前,单元制大容量机组厂用电系统设置的事故保安电源多采用柴油发电机作为备用电源,柴油发电机的控制和保安电源切换一般采用继电器硬接线控制或 PLC控制。鉴于DCS的可靠性,华能巢湖电厂一期2×600MW机组保安电源系统由PLC控制改为DCS控制。
一、保安电源系统
图1为华能巢湖电厂1台机组的保安电源系统。每台机组设置了MCC A段和MCC B段保安电源,正常运行时分别由汽轮机PCA段和汽轮机 PCB段供电。当保安MCC A段或保安MCC B段电源失电时,先将保安MCC A段或保安MCC B段切至锅炉PCA段或锅炉PCB段供电,如果锅炉PCA段或锅炉PCB段电源也失电或切换失败,则自动起动柴油发电机,使保安MCC A段或保安MCC B段由柴油发电机供电。
二、缺陷与不足
(1)保安电源系统控制方式采用PLC控制,接线复杂,同时将保安电源系统的控制信号、反馈信号、故障信号以及保安MCC段母线低电压信号等送入DCS和就地PLC控制系统,使二次回路复杂,可靠性降低;为防止非同期合闸,须将保安段进线开关由DCS发出的合闸信号送到就地PLC控制系统进行控制,同样使二次回路较复杂。
(2)恢复正常供电切换方式为不间断供电并列切换方式,即先闭合QF12(或QF22)开关恢复保安段供电,再断开保安PC段QF1(或QF2)馈线开关,使同期检查回路及控制逻辑较复杂,通常采用瞬间停电的方法进行切换。
(3)保安段失电仅采用保安段母线低电压作为控制判据,易误触发柴油发电机自动控制程序;将保安段工作电源进线开关切除,增加了保安段失电的风险。
[page]三、保安电源系统控制改进
3.1 自动起动控制逻辑
系统的运行由运行方式开关选定,在DCS上分别设有保安MCC A段和保安MCC B段2个运行方式开关,运行方式有自动方式和手动方式。为防止误操作导致的非同期并列,以保安MCC A段为例,在保安MCC A段自动控制方式投入后,控制逻辑将禁止手动操作,即在DCS上不能手动操作QF11、QF12、QF13、QF14、QF1开关。保安MCCA段自动控制方式投入许可条件为:柴油发电机为自动控制方式;QF1、QF14开关在备用状态;QF11、QF12、QF13开关在合闸位置;保安MCCA段带电;汽轮机PCA段带电;锅炉PCA段带电。
保安MCC A段运行方式开关处在自动控制位置时,当保安MCC A段的正常供电电源消失后,其自动控制程序运行。保安MCCA段自动控制程序见图2。
(1)判断保安MCC A段失电 为防止误判断导致误切换至保安段,采用复合条件判断,即保安MCC A段母线和汽轮机PCA段母线低电压且QF11、QF12开关在合闸位置,或者保安MCC A段母线低电压且QF11或QF12在跳闸位置时,则判断为保安MCC A段失电。
(2)保安MCC A段切换至锅炉PCA段备用电源供电发出QF12开关跳闸指令且QF12开关已跳闸,确认锅炉PCA段带电且QF13开关在合闸位置,否则发出起动柴油发电机组指令;发出QF14开关合闸指令且QF14开关已合闸,否则发出起动柴油发电机组指令。
(3)判断保安MCC A段再次失电 保安MCC A段母线和锅炉PCA段母线低电压且QF13、QF14开关在合闸位置,保安MCC A段母线低电压,或者QF13或QF14开关在跳闸位置且QF13、QF14开关保护未动作(如QF13或QF14开关保护动作,则退出柴油发电机自动控制程序),则判断为保安MCC A段再次失电。
(4)起动柴油发电机组发出QF14开关跳闸指令后QF14开关已跳闸;发出起动柴油发电机组指令且柴油发电机组起动后,QF01开关立即自动闭合,保安PC段带电。
(5)保安MCC A段切换至保安PC段供电确认QF12和QF14开关在跳闸位置、QFO1在合闸位置,发出QF1开关合闸指令,保安MCC A段带电。
3.2 自动停机控制逻辑
(l)判断系统是否带电 接收到汽轮机PCA段带电信号后,即可判断系统带电,但是为防止误判断,延时120s确认汽轮机PCA段带电。
(2)将保安MCC A段切换至正常方式供电 QF11开关在闭合位置,DCS发出QF1开关跳闸指令,并确认收到QF1开关已跳闸反馈信号;DCS发出QF12开关合闸指令,并确认收到QF12开关已闭合反馈信号且保安MCC A段带电。
(3)停止柴油发电机组 保安MCC A段、保安MCC B段带电且 QF1、QF2开关在跳闸位置,延时3min停运柴油发电机组。
3.3 手动控制逻辑
在DCS上将保安MCC A段运行方式开关切换至手动控制方式。在手动控制运行方式下,可手动对柴油发电机进行同期并网试验,或手动将保安MCCA段切换至锅炉PCA段备用电源供电,或手动将保安 MCC A段切换至柴油发电机组供电等。
为防止误操作导致非同期并列,需在DCS上设置开关之间的闭锁逻辑。保安MCC A段在手动控制方式下且QF1开关在跳闸位置,则闭锁QF11、QF12、QF13、QF14开关的手动合闸功能;保安MCC A段在手动控制方式下且QF01、QF2开关在跳闸位置及QF12开关在闭合位置,或者QF1在闭合位置及QF12、QF14开关在跳闸位置,则闭锁 QF1开关的手动合闸功能。
四、调试过程中出现问题的处理
4.1 DCS与柴油发电机接口
(1)自动起动在柴油发电机组控制回路中,柴油发电机组的自动起动指令应为持续高电平信号,一旦高电平信号消失,则柴油发电机组停机。对此,在系统中增加1个24VDC自保持起动继电器,在DCS发出起动柴油发电机组脉冲信号消失后,由自保持起动继电器将指令信号保持为持续高电平信号,以维持柴油发电机运行。
(2)自动停机DCS发出的自动停机脉冲信号主要是停运和跳闸柴油发电机出口开关,为扩展输出接点数,在系统中增加1个24VDC 停机继电器,由DCS发出自动停机脉冲信号触发该继电器动作,动作继电器的1对常闭接点用于解除自保持起动继电器从而停运柴油发电机组,1对常开接点接至柴油发电机出口开关跳闸回路,另1对常闭接点接到柴油发电机出口开关合闸回路,以防止该开关反复跳合闸。另外,需要注意DCS自动停机脉冲信号的宽度应大于柴油发电机停机所需的时间。
[page]4.2 负荷投切
保安MCC A段、保安MCC B段同时失电时,为防止两段负荷同时投入运行导致保护起动的柴油发电机停止运行,或者负荷在投切过程中由于柴油发电机出口电压降低而导致负荷电流过大引起跳闸,在QF1、QF2开关自动投入控制逻辑中设置只要QF1、QF2开关任何一个已闭合,另一个开关则延时10s合闸,即相当于将保安负荷分2次投入运行。
4.3 保安段失电判据
通常,采用保安段母线低电压作为保安段失电保护动作判据,当保安段母线电压正常,柴油发电机组处于自动控制方式时,如果保安段母线PT因故退出或人为误碰、误拉,将会误起动柴油发电机自动控制程序,将保安段工作电源进线开关切除,从而增加保安段失电的风险。对此,采用复合条件作为保安段失电动作判据:保安段母线和汽轮机PC段母线低电压且QF11、QF12开关在闭合位置,或者保安段母线低电压且QF11或QF12开关在跳闸位置以及QF11、QF12开关保护未动作,则保安段失电动作。
4.4 保护闭锁
对于保安段母线低电压且QF11或QF12开关在跳闸位置以及 QF11、QF12开关保护未动作的情况,保安段失电是由开关误跳闸引起的。为防止失电的保安MCC A段或保安MCC B段母线再次受到冲击,保护动作信号将使柴油发电机自动控制程序退出运行。机组投产后曾发生保安MCC A段工作电源进线开关QF12跳闸,保安备用电源进线开关QF14未自动合闸,使保安MCC A段失电,IC、ID磨煤机等跳闸,机组负荷由389MW降至300MW。就地检查发现,保安MCC A段的MT12N1型工作电源进线开关QF12显示AP LED报警(QF12开关控制单元的自动保护跳闸信号(超温或控制单元损坏等)灯亮,为断路器主触头运行中发热造成超温引起断路器自动保护动作。对此,对柴油发电机自动控制逻辑进行了修改,取消对保安MCC A、保安 MCC B段工作电源回路保护动作信号的闭锁,即当保安MCC段失电时,无论电源进线开关是否保护动作,均自动闭合备用电源进线开关;若备用电源进线开关保护动作,则柴油发电机退出自动控制方式。
4.5 低电压继电器选型
通常选用DY-32或DY-33型电压继电器作为电源母线低电压保护继电器,由于这2种继电器均属于电磁型过电压继电器,不允许在超过动作值后长时间处于闭合状态,否则将导致电磁机构长期处于振动状态而引起继电器触点抖动、拉弧、粘连,影响柴油发电机组的自动起动。对此,改用DY-37电磁型低电压继电器或JY-156集成电路型低电压继电器。
五、结论
(1) DCS的硬件功能完整,响应速度快,其输入/输出模块可以方便地与柴油发电机控制连接,不会出现二次安全防护问题。
(2) DCS控制保安电源系统编程简单、使用方便,且具有离线模拟程序运行功能,便于检测控制程序的正确性;可在线组态控制逻辑,运行维护方便。
(3)采用DCS控制保安电源可共享DCS的保安电源系统实时数据,无需增设电缆和增加控制设备;因DCS设计中输入/输出模块的余量较大,可利用现有资源。
(4)简化了二次控制回路,提高了可靠性、安全性。
(5)实现了保安电源切换的自动控制,使得保安电源系统开关的动作和柴油发电机组的自起动更加迅速和可靠。
上一篇:光伏功率预测系统在某光伏电站的应用
下一篇:凌力尔特Nano电流电压监视器锁定多电池应用
推荐阅读最新更新时间:2023-10-18 16:37
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 【有奖知识问答】vishay电感,感动电子生活!
- 有奖国产芯直播:先楫800MHz RISC-V MCU高能秀,岂止控4只伺服电机,干货多多
- 安世半导体&世平集团 高效能&小型化, Nexperia MOSFET的5G解决方案 观看、下载 闯关赢好礼!
- 你评论,我送礼!《玩转TI MSP430 Launchpad》TI社区与EEWORLD联合首发!
- 有奖直播:英飞凌 MERUS™ D 类音频放大器的多电平技术及其优势
- 有奖直播预报名|TI 新一代Sitara™ AM62处理器革新人机交互——加速边缘AI的开发
- 我们猜啦!MDO3000之竞猜有奖:免费的部分会值多少?
- 快来应援吧!投票选出你最爱的TI培训课程