无功补偿是用来提高电压质量、降低网损的有效措施之一,方法是给感性电路中的电感并联电容器,使感性负荷所吸收的无功功率大部分有电容器提供。无功补偿容量的确定有一般方法和优化方法。本文简略分析无功补偿容量的经典优化法。
1 补偿容量优化法
无功补偿容量的优化法是:分别从网损最小、年运行费用最小、年支出费用最小的观点出发,求出最佳补偿容量的算法。这些算法的特点是:求得所要求的量值的数学表达式,然后用求函数极值的方法,求得补偿容量。是一些古典的求极值算法,故称为经典优化法。
1.1 按网损最小确定补偿容量
无功补偿的目的是降损节能,因此,从网损最小的观点出发来确定补偿容量是很重要的。如图1所示,该图中各段时间内的总无功负荷为Q,,Q:,…,Q。,假定网络总补偿容量为Q。,则全年的电能损耗和无功负荷的关系为:
其中:△Pc是补偿电容每Kvar的有功损耗(kW);T是年运行时间(h);R是补偿点至电源的等值电阻(Ω)。为使网损最小,可将网损△A对Qc微分,并命其为0,则其:
这种算法比较简单,但没有计人补偿电容所需要的费用。该算法所能保证的只是网损最小,但如果考虑安装补偿电容的费用,不一定是最经济的。
1.2 按年运行费用最小确定补偿容量
年运行费用由两部分组成:第1部分是加装电容器后网络损耗的电价,即F1=△A×β,△A是年电能损耗(kW.h),β是有功电价[元/(kW.h)]第2部分是补偿装置的年运行、维护费用,即F2=KaKcQc,其中Kc是装设单位补偿容量的综合投资(元/Kvar),Ka是补偿装置的维护费用率(%)。年运行费用F=F1十F2=△A ×β十KaKcQc,将△A值代人。为使F最小,将F对Qc微分并命其为0,得:
1.3 按年支出费用最小确定补偿容量
年支出费用是指同时考虑年运行费和投资的回收。设投资每元钱的回收率为Ke%,年支出费用为:Z=F+KeKcQc,其中F是年运行费用;Ke是投资每元钱的回收率。该式采用直线平均法,将电容补偿的总投资平均分摊在各个年度。为使年支出费用最小,将Z对Qc微分并令其为0,从而可求得:
上述3种方法的基本思想和计算公式的形式很相似,但其所计及的因数和获得的经济效益却各不相同,所以其适应的范围也因此而异。通过分析,可见;第1种方法的补偿量和投资均是最大的;第2种方法的补偿量和投资皆居中;第3种方法的补偿量最小,因此其所用的投资也最小。
在此仍然采用经典优化法。首先求出线路的总损耗△p的表达式,为了使总损耗最小,将△p对分支的补偿容量Qci微分并令其为o,便可求得各分支的最佳补偿容量Qci。
2.1 辐射分支线路中的补偿容量的最佳分配
图2所示的辐射式分支网络中,若其共有n个分支,则装置的总容量Qc在各个分支中应该进行合理分配。总损耗表达式为:
将△p对Qci微分并令其为0,得:
(Q-Qci)Ri=(Q-Qc)R
[page]其中:Q是网络总无功负荷;Qc是补偿总容量;只是全网等值电阻。从该式可得:
这说明:在辐射分支网络中,当网络无功总负荷Q、总补偿容量Qc及各分支无功Qi为已知的条件下,各分支的补偿容量Qci只取决于全网等效电阻尺和各个分支电阻Ri。
2.2 非纯辐射分支线路中的补偿容量的最佳分配
典型的非纯辐射电网如图3所示,如果要在第i个节点进行补偿,则要对第i一1个节点和i个节点的情况联合考虑。如果第i一1个节点和i个节点之间的无功容量为Qi-1,而节点i一1和i之间的总补偿容量为Qci-1,i,则两者可分别视为节点i之后的总无功需求量和总补偿容量。如此可套用上式,得:
其中:Q是第i个分支的无功负荷(Kvar),R∑i是第i个节点后网络的等效电阻(Ω),Ri是第i个分支的电阻(Ω),而且
3 其 他
用经典优化法,还可计算负荷沿线分布时最佳补偿点的位置和容量配置。其中负荷沿线分布的情况有:均匀分布、递增分布、递减分布、等腰分布等。补偿方式有单点补偿、两点补偿和n点补偿。当无功负荷非均匀分布时,补偿容量用相对分析法来确定。该方法通过引入阻值系数,将非均匀分布负荷化为求解均匀负荷分布的问题,然后用叠加原理,将多电源供点的问题化为单电源供电问题来求解。在此,由于篇幅有限,只能提到而已。
上一篇:TIMSP430F471xx超低功耗三相电表解决方案
下一篇:无功补偿容量的经典优化法分析
推荐阅读最新更新时间:2023-10-18 16:38
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况