无论电源转换和分配技术变化多快,变压器在短期内是不会有太大改变,因为它们需要从次边到初边的隔离反馈来实现闭环控制。传统采用双列直插式封装 (DIP) 的光耦合器已存在超过 30 年。与此同时,表面贴装技术的出现及对微型化的需求也在驱动着光耦合器封装形式的发展,从 DIP 到小外形封装 (SOP)及微型扁平封装 (MFP)。
在新一代最终产品中,工作于3.3V、典型效率为80%的转换器所需的散热器或外部冷却装置所占用的空间将逐渐从设计中消去。设计者不得不将更高的输出功率硬挤进低侧高的薄型转换器中。减少散热的新设计方法促使模块化DC-DC转换器的出现
,毋须散热装置,且转换效率高达90%及以上。然而,它的功率密度却很高,尽管效率只有少许提高,但器件工作温度持续上升。基于这些原因,虽然光耦合器仍然是想获得主要安全认证机构认可的最终产品的关键器件,但这在模块化DC-DC转换器中已成为不容忽视的问题。其它实际问题如成本和尺寸等,也是推动传统光耦合器必须改进的原因。
传统器件的局限
高工作温度是传统光耦合器的大敌。随着温度上升,电流转换比 (CTR) (即光敏晶体管的输出电流与LED输入电流的比率) 会快速下降,在温度高于85 °C时导致极低的输出电流。LED的效率对器件的整体热性能也有很大影响。
传统光耦合器的封装由一个被外部铸模所密封的圆顶构成,也容易受高温影响而损坏。内部光导管材料 (gel/rtv) 与外部铸模化合物的热膨胀系数 (CTE) 若不匹配,封装就可能出现破裂、芯片翘起、线绑定断裂或翘起,甚至内部材料溢出。此外,DIP光耦合器封装不能良好地贴装在PCB上。表面贴装回流需要形成引线才能实现,这样会导致微破裂的风险,影响器件的可靠性。
封装技术的局限还会带来其它缺陷。例如过铸模工艺十分昂贵和费时,而且还需要铸模材料去除工艺,例如去闪烁 (deflashing),这些都会增加生产光耦合器封装的时间和成本。此外,形成不同尺寸如4、6或8引脚封装的模具所需的工具也要很大的投资。再者,若一项设计的其它器件都采用扁平的表面贴装器件如TSSOP或TQFP,DIP封装的高度也会造成问题。
减载或创新?
面对高温下热性能下降的一个方法是将转换器限定在一个较窄的温度范围内。这种方法的缺点是转换器不能在期望的温度范围内输出全功率。另外,最近的一些设计则利用脉冲变压器或磁耦合器来代替光耦合器。
但是,现代的LED和光敏晶体管技术,加上新的表面贴装BGA封装,可让光耦合器承受较高的工作温度,获得良好的热循环可靠性,并减少器件尺寸和封装成本。图1所示为采用BGA封装的表面贴装光耦合器,其最大高度为1.20mm,面积小于现时的PDIP封装。
图1 采用BGA封装的单通道光耦合器
该封装方式省去了过铸模工艺,但仍然可提供能承受高温的稳固结构,并且可去除需要投入大量资金的工艺,如去闪烁和引线形成等。
高功率LED和优化的光敏晶体管也对该器件增强的热性能做出了不小贡献。LED在低电流时仍可有效工作,再加上晶体管的高增益,使到该器件能在室温下获得很高的典型CTR。这种称为Microcoupler(tm)的新型器件的工作温度比现代DC-DC转换器其它板上器件所能承受的温度更高。
Microcoupler器件包含一个基底,其上带有模型迹线,以及用于铝砷化稼发光二极管 (LED) 和硅光敏检测器晶圆附着的衬垫。LED被绑定在外以便对其施加偏置电压,光敏检测器则与输出相连。具有高传输性能的光学涂层可用来耦合LED和光敏检测器,然后,光学涂层再被反光层覆盖,使到光敏冲模的红外传输达到最大。无铅 (Pb-free) 焊接球形成从封装到印刷线路板的第二级互连。因此,Microcoupler可同时将传统的PDIP封装转移至低侧高的SMT无铅技术,适合现在和未来的所有设计应用。
性能:CTR对比温度
图2比较了传统4引脚DIP和单信道Microcoupler封装的CTR,显示新封装具有良好的热性能:Microcoupler的热性能随温度上升而下降 (1mA, 5V) 的幅度只有30%,而传统器件却高达60%。
图2 4引脚DIP和Microcoupler随温度而下降的归一化CTR
性能:封装可靠性
初步的压力可靠性和FEA分析表明,在260 °C回流后,Microcoupler最大压力小于硅临界压力的五分之一。试验测试结果也证明焊球和反射层的压力比较小,这将增强较传统光耦合器可承受更高温下的可靠性和寿命。
结语
本文谈论了采用表明贴装BGA封装的光耦合器的独特结构。这种封装结构及其装配流程比现有的封装简单,特别适于低侧高表面贴装器件。采用无铅焊球也实现了完全无铅的封装。
上一篇:变频器的谐波干扰与抑制办法
下一篇:切勿忽视POE应用中的电缆和连接器失衡
推荐阅读最新更新时间:2023-10-18 16:45
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况