电动车电池出现的问题及保养

最新更新时间:2012-07-05来源: 维库电子关键字:电动车  电池  保养 手机看文章 扫描二维码
随时随地手机看文章

  1  电动车电池出现的问题原因

  1.1 电池本身引起的

  为什么这么说呢!在前一期里我们知道了铅酸电池的工作原理,铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免硫化。

  1.2 电池生产的原因

  针对电动自行车用铅酸蓄电池的特殊性,各个电池制造商采取了多种方法。最典型的方法如下:

  ①增加极板数量

  把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。

  ②提高电池的硫酸比重

  原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右,这样可以提供较大的电流,提升电池的初期容量。

  ③增加正极板活性物质氧化铅的用量和比例

  增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。

  通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,最终结果却是牺牲电池的寿命。

  ④还有就是极群组装虚焊问题

      容易产生虚焊的地方是极板。而每个电池的单格有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分之一,平均每37组电池就会有一组电池存在虚焊,这是绝对不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。

  从以上我们可以看出:为什么电池有好有坏,有的厂家生长的电池相同使用条件下寿命会更长。

  1.3 电动车使用环境本身引起的原因

  只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。

  ①深度放电

  用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。

  ②大电流放电

  电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,但是实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。所以,电动摩托车的电池寿命更短,因为电动摩托车的车身太重,电机功率大,在巡航时工作电流达8A以上。有的甚到达到10A.

  ③充放电频率高

  用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。甚到有的人可能一天充好几次 ,充的时间很短,没有充饱就使用了。

  ④短时充电

  由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重……

  ⑤放电后不能及时充电

  作为交通工具,电动自行车的充电及放电被完全分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结晶。

  1.4 电动自行车生产方面的原因

  大多数车的控制器都留了一个限速插头,一些车厂干脆就去掉限速器出厂,既可以吸引看重车速的客户,也能降低成本,这样的车在高速行驶时电流非常大,会严重缩短电池寿命。

  12V铅酸电池的最低保护电压为10.5V,如果是36V电池组,最低保留电压就是31.5V,目前大多数车厂采用的控制器欠压保护电压也都是31.5V。表面上看这是正确的,但是,实际当36V电池组只剩下31.5V电压时,由于电池存在容量差,肯定就会有一个电池电压低于10.5V,该电池就处于过放电状态。这时候,过放电的电池容量急剧下降,这时对电池的损伤影响不仅仅是该单只电池,而是影响整组电池的寿命。其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤却非常大。只要出现这样的情况10次,电池的容量就会低于标称容量的70%。另外,一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大,而大多数车的说明书没有给用户以警示。目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的。在价格竞争中,面对更注重车外表的用户群,很少有产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪。

  1.5 充电设备的原因

  业界广为流传的一句话就是:电池不是用坏的,而是充坏的。为了满足电动自行车电池的短时高容量充电,在三段式恒压限流充电中,不得不通过提高恒压值到2.47V~2.49V。这样,大大超过电池正极板析氧电压和负极板析氢电压。一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补。这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧。而电池的氧循环又不好,这样在浮充阶段也在不断的排气。恒压值高了,保证了充电时间,但是牺牲的是失水和硫化。恒压值低了,充电时间和充入电量又难以保证。在改善电池的电池板栅合金、提高析气电位、改善氧循环性能,提高密封反应效率的基础上,控制充电最高充电电压在2.42V以下,也就是在析氢电位以下。这样做必然会导致充电时间的延长,这就必须在大电流充电(限流充电)的状态下,加入去极化的负脉冲,改善电池的充电接受能力,在大电流充电的时候多充入一些电量,缩短充电时间。70%的2C电流充电,是电池在充电接受能力比较大的时候,对电池采用大电流充电,对电池的损伤比较小。电池基本上没有高于严重析氢电压。一旦高于析氢电压,电池也会快速的失水。使用这类充电器,必须采用连续充放电,如果中途停止几天充电,电池就会产生比较严重的硫化而提前失效。而用户使用电池,是无法保证每次使用以后,都能够及时充电的,一年以内发生数次没有及时充电的情况,电池的硫化就会积累。一些充电器制造商把某些功能夸大,成品的功效其实没有其宣传的那样好。

  1.6 其它原因

  不少电池在单体测试中,可以获得比较好的结果,但是,对于串连电池组来说,由于容量、开路电压、荷电状态、硫化程度各不相同,这个差异会在串连电池组被扩大,状态差的单体会影响整组电池,其寿命明显下降。

  从电池在生产线上充电,到用户购车后配车使用这段时间要经过很多环节,间隔时间甚至会长达数月,在这期间,由于没对电池进行补充电,自放电产生的硫酸铅大量堆积结晶,用户刚买到的新电池可能是已经老化甚至报费的电池。

  电池厂家在执行质保时,对回收电池并不是完全的淘汰。电池返退以后,电池制造商重新进行充放电检验,在检验中往往会发现有60%以上的单体电池是不符合返退条件的电池。其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降而引起整组返退。不少电池制造商对返退电池采取配组、补水、除硫、包装后,又重新提供给用户,以提高电池的有效使用寿命,降低报废率,减少电池制造商的部分理索赔的损失,所以,很多经销商已经感觉到厂家提供的电池明显“一代不如一代”。

  2 电动车电池保养

  电动车电池用上一年半载的就要换新的,到底怎么才能延长电动车电池寿命呢?

  (1)首先不能超载超重行驶(如骑车带人或装载重物等)

      行驶中发现仪表显示电量不足时,要用人力骑行,因为深度放电对电池寿命的损耗很大。

  (2)注意充电方法

       新电池在第一次充电时,时间一定要长,要保证将电充足。对于铅酸蓄电池来说,不管路程远近,使用完后都要立即充电,随放随充,不要到电量完全耗尽才想到充电,如车长期不使用,也要保证每月补充电一次。这样既可保护电池,又能延长其使用寿命。

  (3)尽量避免急刹车

      频繁的急刹车会影响到刹车灵便度,耗费电池容量;车速不宜过快,车速越快,对电池的损耗越大。

  (4)不要在静止的状态下直接利用马达启动车子,最好用脚踩同时助力进行启动。

      上桥、上坡、逆风行驶时务必要用脚踏助力,以避免对电池造成冲击性伤害,影响电池的续行里程和使用寿命。

  (5)使用中对电动车电池保养

  a)在起步、上桥、爬坡,或顶风行驶时,应该辅以人力,尽量避免瞬间大电流放电。

  b)需加速时,应缓慢旋转调速把,避免直接加快至最快档。

  c)在路况允许的情况下,尽可使电动车以最高速度行驶。

  d)尽量避免频繁刹车、启动,在道路拥挤时多用脚蹬驱动。

  e)电量显示电池已没电了,一段时间后,您会发现电池又有小量电压,称为回升电压,用户应避免使用这回升电压来骑行。

  (6)充电方面对电动车电池保养

  a)夜间充电,平均时间在8小时左右,避免过充和欠充。

  b) 充电时,指示灯显示满电时不要立即拔下来,再浮充2-3小时。

  c) 尽量一次将电充满。如确实需要在充电过程中骑行,应在骑行完后立即充满。

  d)勤充电对循环寿命是有益的,但目前市场上大量流通使用的充电器存在故障率高,可靠性差,精度低等缺陷。因此,有时勤充电反而影响电池的使用寿命。而将电池放空再充电,可能造成某些单格过放电,过放电池充电接受能力会大大降低,引起充电不足的故障,另外由于放完电再充电,充电器重负荷时间长,易损坏充电器。因此蓄电池放出电量的50-70%时进行一次充电是较合理的,对电池的寿命有好处。

  (7)电动车电池保养要注意避免亏电存放

  亏电状态是指电池使用后没有及时充电。在亏电状态下出现硫酸盐化,硫酸铅结晶物附在极板上,堵塞电离子通道,造成电池容量下降。亏电状态闲置时间越长,电池损坏越严重。特别是夏天,务必及时充电。存放时间每超过一个月就要补充一次电。

  (8)对电动车电池保养还应及时维护

  当电池出现以下情况须要维护

  a)长时间充电不变绿灯

  b)电池在充电时发烫

  c)电池容量下降太快

  (9)电动车电池保养要定期检验

  在使用过程中,如果电动车的续行里程在短时间内突然下降十几公里,则很有可能是电池组中最少有一块电池出现断格、极板软化、极板活性物质脱落等短路现象。此时,应及时进行检查、再生及配组。这样能相对延长电池组寿命,最大程度地节省开支。

  (10)对电动车电池保养还要注意:电瓶在电动自行车上安装要牢固,以防骑行时电瓶受振动损害;经常清除电瓶盖上的灰尘、污物,注意保持电瓶干燥、清洁,以防电瓶自行放电。

关键字:电动车  电池  保养 编辑:探路者 引用地址:电动车电池出现的问题及保养

上一篇:提高电动车电池性能的管理系统
下一篇:水体系锂空气电池的发展现状

推荐阅读最新更新时间:2023-10-18 16:56

2018年全球电池材料市场将增到435亿美元
  根据Markets and Markets的报告,全球电池材料市场预计从2018年的435亿美元增长到2023年的657.8亿美元,期间年复合增长率为8.62%。   亚太地区将引领全球电池材料市场。电池材料用于制造电池。阴极、阳极、电解质和隔板是电池系统的主要组成部分。不同材料用于制造不同可再充电电池的阴极、阳极、电解质和隔板。铅酸电池材料和锂离子电池材料占全球市场的主要份额。   2018年铅酸电池将成为电池材料市场中最大的电池类型。这一大份额可归因于其可再生性和越来越多应用于备用电源、应急照明、公用事业、安全系统、铁路备用系统、石油和天然气、可再生能源系统和其他应用。电池可减少碳排放,并提供可再生和可回
[新能源]
丰田开发出全球最高效电动车燃料电池
    丰田公司近期开发出一款新型高效燃料电池,准备于2015年推出。丰田表示该电池组的能量密度为3千瓦/升,为当今全球输出功率密度最高的电池。与丰田公司上一代燃料电池FCHV-adv相比,新电池组的体积减小了一半,功率密度增加了一倍。其中核心的技术在于电极的形成材料,具体而言,就是把铂基催化剂的微粒经过冷凝压缩到只有几微米的直径,从而提升效能。铂基催化剂具有以下特点:     1.金属载量高:燃料电池载铂催化剂中,铂载量高达20wt%-80wt%。     2.微粒直径指标要求高:微粒直径为纳米级,在载体上均匀分布,在不同的催化反应下,所要求的粒子直径大小也不同。     3.杂质含量低:影响催化活性的杂质(如氯
[汽车电子]
贵州新政:重点推进宁德时代新能源动力电池及材料等项目建设
近日,《贵州省进一步加快重大项目建设扩大有效投资若干措施》(以下简称《若干措施》)发布,贵州将从全力加快产业投资进度、加大产业配套基础设施投资、全力扩大新型城镇化和生态环保投资、加大民生领域投资、强化要素保障、加快推进项目开工建设达产、建立健全工作机制等7个方面进行了明确,并提出27条具体措施。 在全力加快产业投资进度方面,《若干措施》明确加快推进新型工业化投资项目建设。加快新型工业化基金和新动能产业发展基金投放使用,60%投向新能源汽车、新能源电池及材料、现代化工、大数据电子信息、高端装备制造、新能源、生物医药、节能环保等新兴产业。重点推进宁德时代新能源动力电池及材料等新兴产业和传统优势特色产业项目加快建设。安排不低于2000
[手机便携]
研究人员获得富锂电池阴极新发现 有助于提高电动汽车续航里程
据外媒报道,法拉第研究所CATMAT项目的部分成员、牛津大学的科学家们在研究下一代阴极材料时,对富锂阴极材料中氧-氧化还原过程有了新的理解,并提出可提高锂离子电池能量密度的方法。 牛津大学教授兼法拉第研究所首席科学家Peter Bruce教授表示:“在不断提高锂离子电池能量密度的过程中,能够利用氧-氧化还原阴极的潜力非常重要。此外,与目前商用富镍阴极相比,氧-氧化还原阴极也能带来更大改善的。深入了解氧-氧化还原的基本机理是制定策略、减少此类材料当前局限性的重要举措,可以推动其潜在商业应用的实现。” 法拉第研究所首席执行官Pam Thomas表示:“在英国电气化竞赛中找到开创性解决方案,需要针对行业相关目标进行大规模的集中研
[汽车电子]
研究人员获得富锂<font color='red'>电池</font>阴极新发现 有助于提高电动汽车续航里程
智能电池系统的应用
在计算机工业界,对锂离子 电池 真是又爱又怕。在锂离子 电池 应用的早期所发生的事故,仍然让曾涉入的公司记忆犹新。他们得到了印象深刻的教训:在任何情况下,都不能超过锂离子电池的额定参数,否则肯定会引起爆炸或起火。 除电池的化学成份或电极等参数外,对锂离子电池来说,还有几个确定的参数,如果超过了会使电池进入失控的状态。在解释这些参数的图表中(参考锂离子参数图),相应阈值曲线外的任一点都是失控状态。随电池电压增加,温度阈值下降。另一方面,任何致使电池电压超过其设计值的行为都会导致电池过热。 谨防 充电 器造成危害 电池组制造商设定了几层电池和包装保护,以防止危险的过热状态。但在电池使用中有一个部件可能会使这些措施失败
[电源管理]
新能源、5G巨大需求之下,锂钴电池却现疲软?
随着钴镍价格周期的变化,在 2020 年新能源汽车和 5G 手机换机潮的拉动下,锂钴电池产业链有望迎来大机会。 不过,据外媒报导,2016 年至 2018 年初期间,钴和锂两大电池金属都涨了一倍以上,但今年却表现疲软,两者较去年的高点均下跌超过 50%,今年以来钴与锂的价格指数则分别下跌了 36%与 29%。分析师此前预期钴与锂的需求增长将会超过供应,但随着矿商新一波的产能开出,以及电动车销量的下滑,钴与锂市场的供需情势也出现了反转。 2019 年 7 月,嘉能可宣布关停全球最大铜钴矿 Mutanda,引发市场对钴供给不足的担忧;而在 8 月,西澳 Alita 锂矿宣布破产重组,被业内视为锂矿产能过剩。 对于金属锂,
[嵌入式]
新能源、5G巨大需求之下,锂钴<font color='red'>电池</font>却现疲软?
多点开花,比亚迪“帝国”是怎样壮大的
  比亚迪 走向多元化发展(2016-) “我们的梦想就是通过我们的技术创新,构建零碳、零排放的生态环境系统,使我们的环境更绿色更环保。比亚迪始终坚信技术改变世界,创新造福人类。”王传福曾不止一次公开表示。如今,比亚迪确立了四大绿色梦想:通过 太阳能 电站、储能电站、 电动车 和轨道交通,改变传统的能源消耗方式,改善环境,实现人类的可持续发展。   1. 太阳能电站     2010年比亚迪开始进军光伏领域。初期,光伏行业的行情很好,但此后因国际市场变动等原因,整个行业遭受巨大打击,许多大型光伏企业因此倒闭。然而,比亚迪仍在坚持。   2013年度报告中称,“集团继续加大市场开拓力度,加快推进现有项目,并采取适当的成本控制措
[汽车电子]
田中贵金属工业将在中国生产燃料电池用电极催化剂
开展工业用贵金属业务的田中贵金属集团核心企业—— 田中贵金属工业 株式会社(总公司:东京千代田区,执行总裁:田中浩一朗)宣布,与中国关联公司成都光明派特贵金属有限公司签订关于 燃料电池 用 电极催化剂 制造技术的技术支持协议。 成都光明派特贵金属的子公司雅安光明派特贵金属有限公司(计划2024年夏季开始正式运营)将在工厂内安装生产设备,将于2025年内开始生产面向中国市场的 燃料电池 用 电极催化剂 。 田中贵金属工业 在全球 燃料电池 用 电极催化剂 市场拥有较高份额,通过此次合作,田中贵金属集团应对不断增长的中国国内燃料电池用电极催化剂需求。 固体高分子型燃料电池(PEFC)用电极催化剂 关于 田中贵金属工业
[汽车电子]
田中贵金属工业将在中国生产燃料<font color='red'>电池</font>用电极催化剂
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved