鲁棒、低功耗的电池监控电路前端

最新更新时间:2012-07-18来源: EEWORLD关键字:鲁棒  低功耗  电池监控电路  前端 手机看文章 扫描二维码
随时随地手机看文章

电路功能与优势

图1所示电路为鲁棒的电池监控前端,专为可能发生瞬变的环境而设计,例如工业或过程自动化环境。该电路使用 ADG5408 4通道CMOS多路复用器,后接AD8226 仪表放大器,以低功耗和低成本精确监控各电池的电压,且无需额外的外部瞬变保护电路。

瞬变过压条件可造成传统CMOS开关发生闩锁。通过结隔离技术,PMOS和NMOS晶体管的N和P井形成寄生硅控整流器(SCR)电路。过压条件触发此SCR,导致电流被显著放大,进而引起闩锁。闩锁是一种在关闭电源之前会持续存在的不良高电流状态,它可能导致器件故障。

如果输入或输出引脚电压之一超过供电轨一个二极管压降以上,或者电源时序控制不当,则可发生闩锁。如果通道上出现故障,且信号超过最大额定值,则故障可触发典型CMOS器件的闩锁状态。

电路上电期间,也可能在CMOS开关上电前产生输入端电压,特别是使用多个电源为电路供电时。此条件可能超过器件的最大额定值,并触发闩锁状态。

本设计中使用的两个多路复用器和仪表放大器(IA)具有鲁棒的输入。ADG5408是防闩锁型高压8:1多路复用器。用于制造ADG5408的沟道隔离技术可防止闩锁状态,并减少外部保护短路。防闩锁不保证过压保护,仅表示开关会进入高电流SCR模式。ADG5408还具有8 kV人体模型静电放电(ESD)额定值(ANSI/ESDA/JEDEC JS-001-2010)。

AD8226是一款低成本、低功耗仪表放大器,具有鲁棒的输入,可处理相反供电轨最高达40 V的输入电压,同时将输出限制在供电轨内。例如,采用±18 V电源时,AD8226正或负输入的无损害摆幅为±22 V。AD8226的所有输入均通过内部二极管提供ESD保护。

电路描述

电池监控系统(BMS)需要在电池组内的每个电池两端施加个别电压,以评估电池的充电状态(SOC)和运行状态(SOH)。通过两个多路复用器实现电池组引脚的多路复用,如图1所示,可评估每个电池两端的电压。

一个多路复用器用于正引脚,另一个用于负引脚。此差分多路复用允许将单个仪表放大器用于最多八个通道。这样放大器不需要每个电池的共模电压供BMS使用。

ADG5408的每个通道具有低导通电阻,通常为13.5 Ω,整个温度范围内的最大值为22 Ω。输入失调电流最大值为2 nA时,通道电阻上的最大误差电压为44 nV。

 

图2显示典型CMOS开关(使用外延层)与ADG5408在接受闩锁测试时的结果对比。测试期间,将应力电流施加于引脚1 ms,此操作称为触发,触发后测量引脚上的电流。此特定测试在开关断开、漏极(D)设为VDD且源极(S)设为VSS时执行,如图3所示。接着源极电压被驱动至超过VSS,直至达到所需的触发电流。如果未发生闩锁,则引脚电流返回预触发值。发生闩锁后,引脚继续吸取电流,而不用触发电压驱动。只能通过关断器件来停止。

从图2可看出,此典型CMOS开关在−290 mA达到闩锁电流,而ADG5408不会发生闩锁,除非测试结束于−510 mA。

 

常见变化

对于堆叠使用四个或更少电池的应用,可使用单个ADG5409 的四个差分通道。ADG5409将四个差分输入切换为单个差分输出,且具有与ADG5408相同的防闩锁结构。

电路评估与测试

该电路使用 EVAL-CN0253-SDPZ 评估板,可单独用作评估板,或与EVAL-SDP-CS1Z系统演示平台(SDP)评估板配合使用。在独立模式下,A0、A1、A2和EN逻辑电平可由电路板上的链路或通过SMB连接器连接到电路板的外部来源控制。

如果需要电脑控制,可使用120引脚对接连接器将EVAL-SDP-CS1Z连接到EVAL-CN0253-SDPZ评估板。

设备要求

EVAL-CN0253-SDPZ评估板
±18 V电源
锂离子电池
用于测量输出的数字电压表
如果需要使用PC控制EVAL-CN0253-SDPZ板,额外要求包括:
带USB端口的Windows® XP、Windows Vista®(32/64位)或Windows 7(32/64位)PC
EVAL-SDP-CS1Z SDP
CN-0253评估软件

开始使用仅在独立使用时需要EVAL-CN0253-SDPZ、电源和测试电池。
要使用PC对电路板进行编程,应安装评估软件。为此,须将CN-0253评估软件光盘放进PC的光盘驱动器,加载评估软件。打开“My Computer(我的电脑)”,找到包含评估软件光盘的驱动器,打开Readme文件,按照说明安装和使用评估软件。

测试设置的功能框图图4显示测试设置功能框图。EVAL-CN0253-SDPZ-SCH-Rev0.pdf 文件包含电路板的完整电路原理图。此文件位于CN-0253设计支持包中:(http://www.analog.com/CN0253-DesignSupport)。

 

设置电源输出关闭时,将+18 V电源连接到J3-1引脚(VDD_EXT),将−18 V电源连接到J3-3引脚(VSS_EXT),并将J3-2引脚(GND_EXT)接地。将测试电池接到电池连接。确保链路接头保留在未连接电池的电池连接上;也就是说,如果仅使用四个电池,剩余的四个电池连接应保持连接。

如果电路板需要电脑控制,必须移除以下链路接头:EN、A0、A1和A2。如果使用EVAL-SDP-CS1Z,请使用120引脚连接器将EVAL-SDP-CS1Z连接到EVAL-CN0253-SDPZ。使用尼龙五金配件固定连接。

测试为±18 V电源供电。使用电路板上的EN链路使能ADG5408多路复用器的输出。使用电路板上的A0、A1和A2链路选择测试电池。SMB连接器VOUT可用于连接独立的ADC评估板,例如EVAL-AD7298SDZ ,或者使用数字电压表手动测试。

如果需要电脑控制,请使用USB电缆将EVAL-SDP-CS1Z连接到PC。启动CN-0253评估软件。电池电压可依据手动测试方法测试。如果使用EVAL-SDP-CS1Z,可提供额外的5 V电源引脚。

关键字:鲁棒  低功耗  电池监控电路  前端 编辑:马悦 引用地址:鲁棒、低功耗的电池监控电路前端

上一篇:蓄电池内阻与容量的关系
下一篇:锌锰干电池充电器电路及工作原理介绍

推荐阅读最新更新时间:2023-10-17 14:57

高性能模数变换器设计变压器耦合型前端的方案
采用高输入频率(IF)的高速模拟- 数字变换器 (ADC)的系统,其设计一直被证明是一项具有挑战性的任务。而变压器的采用则使得这一任务变得更为困难,因为变压器存在固有的非线性,这些非线性特性会造成性能难以达到标准。本文就高速分级比较(sub-ranging)ADC采用 变压器 耦合前端 设计时应该注意的问题进行了分类说明。 设计参数 在设计前端时有若干重要的参数需要予以考虑。 输入阻抗是设计的特性阻抗。在大多数情况下它的量值为50,但是某些设计也会要求采用其他阻抗值。变压器本质上是跨阻抗器件,因为在有必要时,它们也可以实现特性阻抗不同的电路间的耦合,从而让总的系统负载得到充分的平衡。 带宽是指系统所使用的频率的范
[电源管理]
高性能模数变换器设计变压器耦合型<font color='red'>前端</font>的方案
C8051F系列单片机的低功耗技术分析与设计
在控制终端系统设计中,当系统要求整体功耗偏低时, C 8051F 系列单片机是一个最佳的选择。它们拥有灵活的时钟硬件,使系统能够方便地在高效运作模式与低功耗模式问进行转换,智能的电源管理模式能够在正常工作及待机状态自由切换,从而降低整个系统的能量损耗;当工作频率低于 10kHz 时,时钟丢失检测器 (MCD) 能够引发系统产生复位,确保系统工作的安全可靠。 1 C 8051F 各部分组件的功耗 当一个系统对功耗要求严格时,可以在硬件电路建立前首先粗略计算一下整个系统所需的功耗。由于 C 8051F 系列单片机为数模混合 SOC 系统,能够实现整个设计的大部分功能,因此整个设
[单片机]
采用PIC12C508单片机的蓄电池监控电路设计
   在卡车,汽车,娱乐车和不间断电源使用 的12v Lead Acid 蓄电池通常其额定值为12V,这个电路监控着电池,充放电曲线,给出当前电压值并预测到供电结束所剩的时间。   12V电池在完全充电时的电压值为13.8V,完全释放时的电压值为10.8v。在3v的范围之内是线性的,能够使用作预测UPS所剩的供电的时间的值。   图中说明了1位的A/D转换器。在单片机GP0,GP1,GP2和GP4脚的电阻存放高,低和开三状态,允许GP3输入端作为电压比较器。   电路示意图:   
[单片机]
采用PIC12C508单片机的蓄<font color='red'>电池监控</font><font color='red'>电路</font>设计
TI 2.4GHz RF 前端将覆盖范围扩展15 倍
2008 年 8 月 4 日 , 德州仪器 (TI) 宣布面向低功耗与低电压无线应用推出业界集成度最高的 2.4GHz 射频 (RF) 前端 CC2591 。该产品集成了可将输出功率提高 + 22 dBm 的功率放大器以及可将接收机灵敏度提高 + 6 dB 的低噪声放大器,从而能够显著增加无线系统的覆盖范围。 CC2591 是一款高性能的低成本前端,适用于诸如 ZigBee® 网络、传感器、工业、消费类电子以及音频设备等所有 2.4GHz 无线系统。该器件可为 TI 所有当前及未来 2.4GHz RF 收发器、发送器以及片上系统产品提供无缝接口,不仅
[安防电子]
关于DSP应用电源系统的低功耗设计研究
自从美国TI公司推出通用可编程DSP芯片以来,DSP技术得到了突飞猛进的发展。DSP电源设计是DSP应用系统设计的一个重要组成部分,低功耗是DSP电源系统设计的发展方向。由于DSP一般在系统中要承担大量的实时数据计算,在CPU内部,频繁的部件转换会使系统功耗大大增加,降低DSP内部CPU供电的核电压是降低系统功耗的有效方法,因此TI公司的DSP大多采用低电压供电方式。   从一定程度上说,选择什么样的DSP就决定系统处于什么样的功耗层次。在实际应用中,电源系统直接决定了DSP能否在高性能低功耗的情况下工作,因此,一个稳定而可靠的电源系统是至关重要的。   TI公司最新推出的TPS6229X系列开关电源芯片有两种工
[嵌入式]
飞兆半导体推出业界领先的HVIC 能在多种应用中节省空间、提高可靠性和降低功耗
最新的半桥栅极驱动器 IC 提供创新的共模噪声清除技术 飞兆半导体公司 ( Fairchild Semiconductor ) 推出业界领先的高压栅极驱动器 IC ( HVIC ) ,具备 独特的共模 dv/dt 噪声消除电路 ,提供 出色的抗干扰能力。与光耦或脉冲变压器解决方案相比, FAN7383 、 FAN7384 和 FAN73832 能够 节省至少 50% 的印制版面积;与市场上同类型的 HVIC 相比,其高性能更可保证出色的系统可靠性和效率。在各种高达 600V 的消费和工业应用中,如变频电机驱动、开关电源 ( SMPS ) 及电子镇流器等,
[新品]
Cirrus Logic推低功耗数模音频转换器 可极大延长电池寿命
DAC增加了立体声耳机和D类扬声器驱动器 扩展了Cirrus Logic低功耗IC系列 2007年10月15日- Cirrus Logic公司(纳斯达克代码:CRUS)近日推出集成了D类扬声器放大器和立体声耳机驱动器的24位低功耗立体声数模转换器 (DAC) CS43L22,拓展了其用于便携式应用的低功耗音频转换器IC产品线。 CS43L22采用先进的低功耗电路设计技术,可在不牺牲音频性能的条件下最大限度地降低功耗。通过高度集成,CS43L22能够充分延长电池的使用寿命,无需更多外部元件,从而降低了系统总成本。 通过为外部扬声器提供每声道高达1W的高效D类放大和每声道44mW的足够功率来驱动立体声耳机,该便携式音频DA
[新品]
3V/5V低功耗同步电压频率变换芯片AD7740
    摘要: AD7740是一种CMOS型低功耗单通道单终端同步电压频率转换芯片,它具有缓冲和非缓冲两种模式。工作范围宽,对外部元件要求小,输出频率准确,无须调整或校准。可广泛用于各种A/D转换系统,并可以和AD22100S温度传感器构成数字式环境温度指示器等电路。文中介绍了AD7740的结构、特点、功能、原理和几种典型的应用电路。     关键词: AD7740  同步  电压频率转换 1 概述 AD7740是一种低成本的超小型同步电压频率转换芯片(VFC),该芯片的工作电压范围是3.0~3.6或者4.75~5.25V;工作电流为0.9mA。AD7740有8脚SOT-23和8脚小型SOIC两种封装形
[半导体设计/制造]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved