关于DSP应用电源系统的低功耗设计研究

发布者:平和思绪最新更新时间:2009-02-17 来源: 与非网关键字:DSP  CPU  电源芯片  MOSFET 手机看文章 扫描二维码
随时随地手机看文章

      自从美国TI公司推出通用可编程DSP芯片以来,DSP技术得到了突飞猛进的发展。DSP电源设计是DSP应用系统设计的一个重要组成部分,低功耗是DSP电源系统设计的发展方向。由于DSP一般在系统中要承担大量的实时数据计算,在CPU内部,频繁的部件转换会使系统功耗大大增加,降低DSP内部CPU供电的核电压是降低系统功耗的有效方法,因此TI公司的DSP大多采用低电压供电方式。

  从一定程度上说,选择什么样的DSP就决定系统处于什么样的功耗层次。在实际应用中,电源系统直接决定了DSP能否在高性能低功耗的情况下工作,因此,一个稳定而可靠的电源系统是至关重要的。

  TI公司最新推出的TPS6229X系列开关电源芯片有两种工作模式:PWM模式和节能模式。在额定负载电流下,芯片处于PWM模式,高效稳定的为DSP供电,当负载电流降低时,芯片自动转入节能模式,以减小系统功耗,适宜于DSP系统的低功耗设计,本文主要介绍了该芯片的特点,并给出了基于此芯片的DSP电源电路。

  1 DSP电源特点

  1.1 电源要求

  TI公司的DSP需要给CPU、FLASH、ADC及I/O等提供双电源供电,分别为1.8V或2.5V核电源和3.3V的I/O电源,每种电源又分为数字电源和模拟电源,即数字1.8V(2.5V)、模拟1.8V(2.5V),数字3.3V,模拟3.3V。相对与模拟电源和数字电源,也要求有模拟地和数字地。数字电源与模拟电源单独供电,数字地与模拟地分开,单点连接。

   DSP大多采用数字电源供电,可以通过数字电源来获得模拟电源,主要有两种方式: (1)数字电源与模拟电源、数字地与模拟地之间加电感或铁氧体磁珠构成无源滤波网络。铁氧体磁珠在低频时阻抗很低,在高频时很高,可以抑制高频干扰,从而消除数字电路的噪声。 (2)采用多路稳压器。方法(1)结构简单,能满足一般的应用要求,方法(2)有更好的去耦效果,但电路复杂成本高。

  1.2 供电次序

  TI公司DSP采用双电源供电,因此,需要考虑上电、掉电顺序。大部分DSP芯片要求内核电压先上电,I/O电压后上电。因为如果只有CPU内核获得供电,周边I/O没有供电,对芯片不会产生损害,只是没有输入输出能力而已;如果周边I/O获得供电而CPU内核没有加电,那么DSP缓冲驱动部分的三极管处于未知状态下工作,这是很危险的。但是也有要求I/O电压先上电,内核电压后上电,如TMS320F2812。

  在设计不同DSP芯片的电源系统时,要根据其不同的电源特点,否则可能造成整个电源系统的损坏。

  2 TPS62290芯片介绍

  2.1 芯片特点

  TPS62290是TI公司最新推出的高效率同步降压DC/DC转换器,应用于手机、掌上电脑、便携式媒体播放器以及低功耗DSP电源设计中,其主要有以下特点:

       输出电流高达1000mA
 
       输入电压范围为2.3~6V
 
      固定工作频率为2.25MHz
 
      输出电压误差范围为一1.5%~1.5%
 
      轻载下采用节能模式
 
      静态电流约15μA
 
      最大占空比为100%
 
      芯片采用2×2×0.8mm SON封装 

     2.2 工作原理

  TPS62290降压调整器有两种工作模式:PWM模式和节能模式。当负载电流增大时,工作于PWM模式,当负载电流减小时,自动转入节能模式以减小系统功耗。

  在PWM模式下,TPS62290使用独特的快速响应电压控制器将输入电压供给负载,在每个周期的开始触发高压MOSFET开关管,电流从输入电容经过高压MOSFET开关和电感流向输出电容和负载。这一阶段,电流逐渐上升,当上升到PWM的极限电流时触发比较器,关闭高压MOSFET开关管。当高压MOSFET开关管的电流过大时也会触发电流极限比较器将其关闭。经过一段死区时间,低压MOSFET整流器工作,电感电流逐渐降低,电流从电感流向输出电容和负载,通过低压MOSFET整流器再流回电感中。在下个周期开始时,时钟信号又关闭低压MOSFET整流器并且打开高压MOSFET开关管,如此循环往复。

  当MODE引脚置为低电平时,TPS62290工作于节能模式。当负载电流减小时,也会自动转入节能模式。当工作于节能模式时,其工作频率会降低,负载电流接近静态电流,输出电压会比正常工作的输出电压高大约1%。此时,输出电压会受到PFM比较器的监视,一旦输出电压降低,器件发出一个PFM电流脉冲,触发高压MOSFET开关管,使电感电流上升。当定时结束时,高压MOSFET开关管关闭,低压MOSFET开关管工作,直到电感电流为零。

  TPS62290有效地将电流传递给输出电容和负载。如果负载电流降低,则输出电压会上升,如果输出电压等于或是高于PFM比较器的极限电压,芯片将停止工作进入睡眠模式,此时电流约为15μA,整个电源系统的功耗达到最低。

  2.3 可调输出电压原理

  TPS62290的电压输出范围为0.6V~Uin(Uin为输入电压),通过外接一个电阻取样网络实现输出电压的调整。其连接方法如图2所示。
 

  可调输出电压可由下式计算得到:

   其中Uref=0.6V(内部基准电压),为了减小反馈网络的电流,R2的值为l80kΩ或是360kΩ,R1与R2的和不能超过lMΩ,以抑制噪声。外部反馈电容C1必须具有良好的负载瞬态响应特性,其取值范围为22~33pF。电感L的取值为1.5~4.7μH,输出电容的取值范围4.7~22μF。在PCB布线时,连接FB引脚的线路要远离噪声源,以减少干扰。

 

 

[page]

      2.4 输出滤波器设计

  TPS62290外接电感的取值范围为1.5~4.7μH,输出电容的取值范围为4.7~22μF,最优工作状态下,电感为2.2μH,输出电容取10μF。不同的工作状态,电感和电容的最佳取值不同。为了工作稳定,电感取值不得低于1μH,输出电容不得低于3.5μF。

  (1)电感的选择

  电感的取值直接影响到浪涌电流的大小。电感的选择主要依据是DC阻抗和饱和电流。电感的浪涌电流随着感应系数的增加而减小,随着输入和输出电压的增加而增加。在PFM模式下,电感也会影响到输出电压的波动。电感取值大,输出电压波纹小,PFM频率高,电感取值小,输出电压波纹大,PFM频率低。

  可以根据下式确定电感的大小:

  其中f-开关频率(2.25MHz)、L一电感值、 AIL一波峰电流、ILmax一最大电感电流实际中常用的方法是:将TPS62290的最大开关电流作为电感电流额定值,带入上式,算出电感大小。

  (2)输出电容的选择

  TPS6229X系列芯片的输出电容推荐使用陶瓷电容,因为低ESR的陶瓷电容可以抑制输出电压波纹,电介质选用X7R或X5R。在高频情况下,若采用Y5V和Z5U电介质的电容,其电容值随温度的变化而变化,不宜采用。

  在额定负载电流下,TPS62290工作在PWM模式下,RMS电流计算如下:

  在轻载电流下,调整器工作于节能模式,输出电压峰值取决于输出电容和电感的大小,大容量的电容和电感可以减小输出电压峰值,以平滑输出电压。

  3 电路设计

   DSP双电源解决方案如图3所示。关于此电路的几点说明:

  1)电压输入端接电容值为10μF的陶瓷电容(C1、C2),减小输入电压的波动。

  2)电压输出端接陶瓷电容(C5、C6、C7、C8),其电容值的选取参见本文2.4节。

  3)U1的使能端接+5V高电平,上电输出1.8V电压,供给DSP内核。

  4)U2的使能端接1.8V电压,当Ul输出1.8V电压时使能U2输出3.3V电压,供给DSP的I/O,这样就实现了核电压先上电,I/O电压后上电。

  5)1.8V和3.3V数字电压分别通过铁氧体磁珠L3、L4进行滤波,从而输出1.8V和3.3V的模拟电压。

  6)电阻R1、R2、R3、R4、C3、C4的取值参加本文2.3节。

  7)电感L1、L2的取值参加本文2.4节。

  8)MODE引脚接地,芯片工作于节能模式,功耗降低。

  4 结论

  DSP复杂的电源系统对供电要求越来越高,如何在保证DSP高性能稳定工作的条件下,降低DSP系统的功耗是一个需要解决的问题。本文介绍了TI公司最新推出的适合DSP低功耗电源系统设计的开关电源芯片,并设计了基于该芯片的双电源方案,满足DSP系统要求的上电顺序。


 
关键字:DSP  CPU  电源芯片  MOSFET 引用地址:关于DSP应用电源系统的低功耗设计研究

上一篇:摩尔定律持续作用 FPGA正改变系统设计未来
下一篇:TMS320C6727的音频采集处理回放系统设计

推荐阅读最新更新时间:2024-05-02 20:46

TI 推出在高电流下实现高效率的同步 MOSFET 半桥
德州仪器 (TI) 宣布推出一款可在 25 A 电流下实现超过 90% 高效率的同步 MOSFET 半桥,其占位面积仅为同类竞争功率 MOSFET 器件的 50%。TI 全新 CSD86350Q5D 功率模块通过高级封装将 2 个非对称 NexFET 功率 MOSFET 进行完美整合,可为服务器、台式机与笔记本电脑、基站、交换机、路由器以及高电流负载点 (POL) 转换器等低电压同步降压半桥应用实现高性能。 NexFET 功率模块除提高效率与功率密度外,还能够以高达 1.5 MHz 的开关频率生成高达 40 A 的电流,可显著降低解决方案尺寸与成本。优化的引脚布局与接地引线框架可显著缩短开发时间,改善整体电路性能。此
[电源管理]
高通/Exynos 5nm旗舰CPU
iPad Air 4率先用上5nm处理器A14,这颗芯片还将被应用到iPhone 12系列上。苹果A14仿生芯片之后,华为、高通、三星等手机芯片厂商将会陆续跟进。其中高通、三星即将发布的5nm旗舰处理器分别为高通骁龙875和三星Exynos 1000。 据报道,高通骁龙875、三星Exynos 1000均为“1+3+4”八核心设计,即一颗超大核心+三颗大核心+四颗能效核心组成。 消息称三星Exynos 1000和高通骁龙875有望采用ARM最新的超大核Cortex X1以及大核心Cortex A78,四颗能效核心可能是Cortex A55。 由于采用了超大核心,Exynos 1000性能有望会与高通骁龙875的差距缩短,达到近乎相
[手机便携]
安森美全新SiC MOSFET器件在严苛条件下依然实现更高能效
推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON),推出另两个碳化硅(SiC) MOSFET系列,扩展了其宽禁带(WBG)器件系列。 这些新器件适用于各种高要求的高增长应用,包括太阳能逆变器、电动汽车(EV)车载充电、不间断电源(UPS)、服务器电源和EV充电桩,提供的性能水平是硅(Si) MOSFET根本无法实现的。 安森美半导体的新的1200伏(V)和900 V N沟道SiC MOSFET提供比硅更快的开关性能和更高的可靠性。快速本征二极管具有低反向恢复电荷,显著降低损耗,提高工作频率以及整体方案的功率密度。 小芯片尺寸进一步增强高频工作,达至更小的器件电容和更低的门极电荷-Q
[汽车电子]
Diodes车用MOSFET为汽车电子控制单元提供
Diodes公司 (Diodes Incorporated) 推出DMP4015SPSQ 40V P通道MOSFET,旨在为车用电子控制单元提供电池反向保护。电子控制单元在愈来愈多车用控制应用内使用,有些汽车更安装了多达80个电子控制部件。新MOSFET提供简易且低成本的解决方案,有效保护这些电子控制单元。 DMP4015SPSQ MOSFET可作为理想的二极管操作,在电池正确连接时驱动电流,以及在电池意外出现反向连接时阻断电流。该器件只需少量无源部件就能驱动,而N通道MOSFET则要利用充电泵供应栅极驱动电压,过程繁复之余,成本和部件数量也上升。新器件免除了充电泵开关拓扑的需要,还能防止电磁干扰问题。 DMP4015SP
[嵌入式]
王恩东:25年坚守,只为一颗国产“好心脏”
  “ 没有自主核心技术就没有核心竞争力,没有核心竞争力就没有话语权。而核心竞争力的获得,则需要勇攀高峰的决心和坚忍不拔的意志。”下面就随嵌入式小编一起来了解一下相关内容吧。    人物档案   王恩东,生于1966年7月,山东济南人,中国工程院院士。1991年从清华大学毕业后即进入浪潮集团工作,现任该集团首席科学家、执行总裁,高效能服务器和存储技术国家重点实验室主任。长期以来,他一直从事计算机系统结构设计、关键技术研究和工程实现工作。   获得首届“全国创新争先奖”后,51岁的中国工程院院士、浪潮集团首席科学家王恩东没得片刻清闲——眼下,他正带队投入AI计算解决方案的研发工作。   从当初研发出中国首台关键应用主机,到今天参
[嵌入式]
基于DSP+FPGA的便携数字存储示波表设计
摘要:本文提出了一种基于DSP+FPGA的嵌入式便携数字存储示波表的设计方案,充分利用微控制器技术和ASIC技术实现了嵌入式实时处理,很好地达到了体积小、重量轻、功能强、可靠性高的要求。 关键字:便携式数字存储示波表,数字信号处理器,现场可编程门阵列,嵌入式设计 1. 引言 随着大规模集成电路技术、信号分析与处理技术及嵌入式微处理器软硬件技术的迅速发展,现代电子测量技术与仪器领域也在不断探讨新的仪器结构和新的测试理论及方法。集数字存储示波器、数字万用表、频率计三者功能于一体的便携式数字存储示波表正代表了当代电子测量仪器发展的一种新趋势。便携式数字存储示波表具有体积小、重量轻、成本低、不需交流供电、可靠性高、使用简便等一系列特
[应用]
如何用DSP和FPGA构建多普勒测量系统
多普勒测量系统 多普勒测量系统利用多普勒效应测量运动目标(固体、液体或气体)的速度。最著名的应用大概要算雷达枪了,交通巡警利用它检测超速汽车。 在测量除汽车速度之外的其他物体的运动(例如心脏中血液的流动)时,需要进行多种测量,来确定更为复杂的流动的细节。方法之一是利用电子束聚集技术。 在这种技术中,将使用大量探测器(许多小雷达枪)测量从发射源返回的频率。这些探测器沿抛物线分布(如图1 所示),因此从焦点返回的信号将会同时到达每个探测器。将这些信号组合起来,并对显著速度的微小波动进行少量处理,就可以确定位于焦点处的物体的速度。如果可以移动探测器来对整个关注区域进行扫描,那么这种方法效果会相当好,但是如果没有这样的条件,则可
[测试测量]
如何用<font color='red'>DSP</font>和FPGA构建多普勒测量系统
基于DSP和PCI总线的通信数据采集系统
    摘要: 介绍一种基于DSP和PCI总线的移动通信数据采集系统。提出了一种双映射方式,成功地解决了DSP的主机通信接口(host port interface,简称HPI口)和PCI9052之间的通信连接。     关键词: 数字信号处理器 数据采集 PCI总线 随着移动通信突飞猛进的发展,移动通信的数据业务量急剧上升,监控大容量的移动数据业务成了电信运营商刻不容缓的需求。而移动通信数据的传输一般都是基于E1链路。因此从E1链路上采集通信数据成了移动数据业务监控最基础的一部分。 数字信号处理器能够高速地处理数据并具有强大的数字吞吐能力,在数据采集领域获得了广播的应用。而PCI总线也因为极高
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved