在功率因数校正预调节器中使用升压跟随器的好处

最新更新时间:2012-10-30来源: 维库电子关键字:功率因数  校正  调节器 手机看文章 扫描二维码
随时随地手机看文章

  传统上,PFC(功率因数校正)离线功率转换器的设计带有两个功率级:第一个功率级通常情况下是一个升压转换器,因为此拓扑结构中有连续的输入电流,可使用乘法器以及平均电流模式控制进行改变,以获得近乎一致的功率因数 (PF)。不过,升压转换器要求有比输入更高的输出电压,同时要求一个额外的转换器将电压步降到可用水平(见图 1)。


  图 1 两功率级转换器的功能结构图

  传统的升压转换器有一个固定的输出电压,比最大的峰值线电压要高。尽管如此,我们也不必对它进行调节,因为步降转换器(2 功率级)可对变量进行调节。只要压升超过峰值输入电压,转换器就会进行适当调节。使用升压跟随器对线电压的变化进行跟踪响应有着许多好处,比如缩小的升压电感器尺寸,以及在峰值线电压较低时更低的开关损耗。


  图 2 升压跟随器和传统 PFC 预调节器的输出电压如何对 Vin(t) 进行跟踪

  升压电感 (L)

  对升压电感的选择是根据最低峰值线电压为 (Vin(min) 、占空比 (D) 为最大时所允许的最大纹波电流 (ΔI) 而定的。以下方程用于计算每一类(传统或跟随器型)预调节器功率级中的电感。ΔI 为峰值输入电流的 20%[5];Pout 为最大输出功率;而 Vout (min) 则为最小升压输出电压。这些方程表明,在输入电压范围较大时,升压跟随器拓扑结构中的电感会小很多。


  例如,若要在具有 85V~265V 宽泛输入范围的 250W 应用中,跟踪输入电压的输出电压范围为 206V~390V 时,使用上述的方程对升压跟随器拓扑的电感进行计算,将需要 570 μH 的电感。同样的条件下,对传统的 390V 固定直流输出拓扑而言,则需要 1mH 的电感。

  升压开关损耗

  以下方程计算了升压 FET 中的功率损耗 (PQ1) [3][5],并表明相对于传统 PFC 而言,当线电压较低时,寄生 FET 的电容损耗 (PCOSS) 以及 FET 的转换损耗 (PFET_TR) 在升压跟随器 PFC 中会小很多。这是因为线电压较低时输出电压 (Vout(min)) 在升压跟随器 PFC 中会小很多,从而减少了整体的开关损耗。


  例如,一款 IRFP450 HEXFET(同样的条件应用于升压电感)的功率损耗在升压跟随器中为 11.5W,而在传统的调节器中的功率损耗则为 19.5W,也就是说在线电压较低时,升压跟随器的效率高出大约 3%。


  图 3 升压跟随器型 PFC 与传统 PFC 的实验室结果比较

  升压 FET 散热片尺寸的缩小

  升压 FET 散热片尺寸的计算在输入电压最低时进行,因为此时 FET 功率损耗最高。以下方程可用于计算传统或跟随器型要求的散热片 (Rθsa) 的最小热阻。其中,Tjmax 为最高的结温,Tamb 为最高的环境温度,Rθjc 为半导体接面至外壳的热阻,而 Rθsc 则为散热片到外壳的热阻抗。


  通过该方程我们可以看到,由于 FET 功率损耗 (P_semi) 减少并且热阻抗上升,因此要求的散热片尺寸缩小--这是升压跟随器相对传统拓扑的又一好处。通过升压开关损耗部分已计算得出的功率损耗,我们可以选择升压跟随器和传统 PFC 预调节器的散热片,以更明显地看到升压跟随器的这一优点。对传统拓扑或跟随器型拓扑的设计要求是 Tjmax 不能超过 FET 最大额定温度的 75%,而 Tamb 则通过线性速度为 150 英尺/分的风扇维持在 40°C。所使用的 IRFP450 在传统拓扑中要求的 AVVID 散热片部件编号为 53002(体积大约为 4.125 立方英寸),而在升压跟随器拓扑中则要求为 AVVID 531202(大约 1.38 立方英寸)--体积缩小了大约 66%。

  保持电容的选择

  不幸地是,如果不增加成本,那么您也就没有办法获得更多的性能。在您得到好处的同时,在电路中也包含进了另一些缺点,包括更慢的瞬态响应以及更大的保持电容 (Cboost),以下方程可估算出要求保持时间为 (tholdup) 的电容大小。Vholdup 是设计要求的保持电压的大小。



  对升压跟随器和传统预调节器的最小要求保持电容进行计算表明了在升压跟随器拓扑中,电容可以高到何种程度。在 250W 具有 16.7-ms 保持时间和 85-V 保持电压的应用中,传统拓扑的最小输出电压 Vout (min) 为 390V,而升压跟随器拓扑则为 206V。升压跟随器拓扑要求的保持电容大约为 330 μF,而传统的转换器拓扑则仅需要 150 μF。

  结论

  升压跟随器型 PFC 预调节器相对传统 PFC 预调节器而言,有更多的优点,电源设计人员对这些优点也颇感兴趣。其优点具体包括升压跟随器型 PFC 在线电压较低时有更高的效率,更小的升压开关散热片,以及更小的升压电感器,从而满足了相似电源的要求。不幸地是,为了得到使用升压跟随器带来的好处,设计人员将面临更慢的瞬态响应,以及更大的升压保持电容。

关键字:功率因数  校正  调节器 编辑:探路者 引用地址:在功率因数校正预调节器中使用升压跟随器的好处

上一篇:用可编程电源管理单元实现电源定序
下一篇:新能源车的市场不可能来源于政府

推荐阅读最新更新时间:2023-10-17 15:07

士兰微电子推出应用于LED照明的高功率因数控制器SD7530
杭州士兰微电子最近推出了应用于LED照明的高功率因数反激式PWM控制器——SD7530。该芯片具有启动电流低(小于5uA)和功率因素高(大于0.95)等优点,可广泛应用于LED日光灯等LED照明产品,最大功率可以做到60W。 SD7530内部集成了高性能的模拟乘法器和零电流检查器,分别用于进行功率因数校正和确保临界导通工作模式。芯片也集成了带消隐电路的电流感应比较器和峰值电流为-600mA和+800mA的输出驱动电路,非常适合于驱动大电流的MOSFET。 此外,芯片内置了软启动电路,能够防止轻载启动时输出电压过冲,降低MOSFET的电压应力,提高电路的可靠性。芯片还设置了各种异常状态保护功能,例如短路保护功能、电源过压
[电源管理]
一种单级功率因数校正LED驱动电源设计
在能源危机和气候变暖问题越来越严重的今天,节能与环保已成为社会焦点议题。LED因其高效、节能、环保、寿命长、色彩丰富、体积小、耐闪烁、可靠性高、调控方便等诸多优点等特点受到人们的广泛关注,被认为是21世纪最有前途的照明光源。传统的白炽灯效率低、耗电高;荧光灯省电,但使用寿命短、易碎,废弃物存在汞污染;高强度气体放电灯存在效率低、耗电高、寿命短、电磁辐射危害等缺点;若能以LED照明取代目前的低效率、高耗能的传统照明,无疑能缓解当前越来越紧迫的能源短缺和环境恶化问题。由于LED自身的伏安特性及温度特性,使得LED对电流的敏感度要高于对电压的敏感度,故不能由传统的电源直接给LED供电。因此,要用LED作照明光源首先就要解决电源驱动的问题
[电源管理]
一种单级<font color='red'>功率因数</font><font color='red'>校正</font>LED驱动电源设计
单级功率因数校正在AC-PDP开关电源小型化设计中的应用
摘要:传统的交流等离子显示器(AC-PDP)开关电源采用的是功率因数校正加DC/DC变换的两级电路。针对其结构复杂,体积较大的缺点,设计了一种单级功率因数变换器,实现了小型化的目的。 关键词:单级功率因数校正;反激变换;彩色交流等离子显示器 引言 随着社会信息化的不断发展以及先进制作工艺的不断提高,作为大屏幕壁挂式电视和高质量多媒体信息显示的终端——彩色交流等离子体显示器(AC-PDP),其屏幕做得越来越大,功耗越来越小,电路结构越来越简单,成本也越来越低。而电源作为ACPDP的一个重要组成部分,也向着小型化和简单化的方向发展。 传统的ACPDP电源一般采用两级方案,即PFC级+DC/DC变换的电路拓扑结构。它们分别有
[电源管理]
Diodes为功率因子校正应用提供崭新高电压整流器
        Diodes公司针对功率因子校正 (Power Factor Correction,简称PFC) 升压二极管应用,推出一对崭新的600V DiodeStar 整流器,以扩展其DiodeStar产品系列。DSR6V600P5及DSR6U600P5以Diodes专有的powerDI5 封装。该封装具备高热效能及厚度薄的特性,从而能使用之设计的产品更薄、热效能更显著。         超小型powerDI5封装的离板高度为1.1毫米,比业内的DPak标准薄52%,而且只有DPak占电路板空间的43%。此外,该封装亦能显著降低热阻 (Rthj-c),因此容许更高密度的设计。           DSR6V6
[电源管理]
如何选择升压调节器/控制器IC并使用LTspice选择外围组件
简介 为升压调节器选择IC的过程与降压调节器不同,主要区别在于所需输出电流与调节器IC数据手册规格之间的关系。在降压拓扑中,平均电感电流基本上与负载电流相同。而升压拓扑的情形则不一样,它需要基于开关电流进行计算。本文介绍了升压调节器IC(带内部MOSFET)或控制器IC(带外部MOSFET)的选择标准,以及如何使用LTspice®选择合适的外围组件以构建完整的升压功率级。 开关电流为何重要 输入电压和输出电压是多少?这是选择降压或升压DC-DC转换器时要问的第一个问题。第二个问题是,满足预期负载所需的输出电流是多少?虽然降压和升压的输入和输出问题相同,但二者选择合适IC以满足输入和输出要求的过程大不相同。 如果将降
[电源管理]
如何选择升压<font color='red'>调节器</font>/控制器IC并使用LTspice选择外围组件
在便携式产品系统中成功运用DC- DC升压调节器
   便携式 电子器件(如智能手机、 GPS 导航系统和平板电脑)的电 源可以来自低压 太阳能电池 板、电池或AC-DC 电源 。电池供电系 统通常将电池串联叠置以实现更高的电压,但此技术由于空间不 足未必总是可行。 开关 转换器使用 电感 磁场来交替存储 电能 ,并以不同电压释放至负载。因为损耗很低,所以是个不错的高效选 择。连接至转换器输出端的电容可降低输出电压 纹波 。本文所讨论的升压, 转换器提供较高电压;而前一篇文章1所讨论的降压转换器提供较低输出电压。内置FET作为开关的开关转换器称为开关调节器,2 需要外部FET的开关转换器则称为开关 控制器 .3   图1 显示 采用两节串联的AA电池供电的典型低功耗系统。电
[电源管理]
在便携式产品系统中成功运用DC- DC升压<font color='red'>调节器</font>
校正示波器的技巧
示波器是一种常用的电子测量仪器,可以把人们肉眼无法看到的电信号转换为可见的图像,以便于人们的观察和研究。示波器在使用中都是需要进行校正的,那么我们对于校正示波器的技巧都了解过吗?下面小编就来为大家具体介绍一下吧。 示波器与其它仪器一样(如万用表等),在使用之前都必需要先对其进行校正。而所谓对示波器的校正,是将示波器的原来波形在测试之前正确调试出来。也就是说,校正出来的波形要与示波器本身所设定的参数一致(这些参数通常会在校正的测试点标志出来)。以GW GOS-602示波器为例:在其面板的左下角就是要求校正波形的参数,如电压值为2V、频率是1KHz等(右图),就是要求示波器的校正波形(或正、余弦波、方波)的电压峰峰值为2V、频率为1
[测试测量]
Pulse推出直流降压调节器适用的耦合电感
Pulse推出业界首款耦合电感,适合非隔离直流降压调节器。这种多相耦合电感根据Volterra的许可开发制造的,支持Volterra的VT1165M和VT1115M芯片组,采用其耦合电感专利拓朴。 Pulse的PA131xNL是系列表面封装的标准电感,符合RoHS规范,具有两相、三相、四相或五相磁耦合。每相的等效瞬态电感为50nH,磁化电感大于250nH。每相额定电流为40A,最大直流电阻为0.5毫欧。这些器件相间不稳定电流可达5A,这样可在非理想环境下稳定工作。
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved