1 系统总体方案设计
基准源主要由上位机控制、FPGA控制、DDS、参考源、调制信号源及波形输出模块组成,如图1所示。上位机控制单元是由计算机通过USB总线连接至电路板进行控制操作。FPGA控制单元实现与上位机控制单元交互信息,同时以并行方式向DDS芯片发送控制字,以管理其内部寄存器。参考源为DDS提供高精准的时钟晶振,确保DDS输出信号的频谱纯度。调制信号单元为DDS提供外部调制信息。波形输出模块由低通滤波器、运算放大器及电阻网络组成,主要完成DDS输出信号的滤波,放大等功能。
系统上电复位后,电路板上的绿色LED二极管闪烁提示整机处于正常状态。当有DDS波形输出时,电路板上的蓝色LED二极管闪烁提示工作正常。
2 系统模块设计
2.1 系统软件设计
基准源的上位机控制采用C语言编程实现,主要完成对FPGA内部寄存器的读写操作,进而控制板上各种硬件资源的管理。另外,DDS的频率控制字的计算也由上位机软件计算得到。FPGA接收到上位机的命令,经解析后向DDS的内部寄存器写入控制字,完成相应功能。同时,FPGA负责电路板上的各种时钟管理。系统软件的总体工作流程如图2所示。
2.2 频率控制设计
本文采用DDS技术产生频率可调的波形,具有频率分辨率高,相位连续等优点。DDS基本框图如图3所示。
DDS的基本结构包括:相位累加器,正弦查找表ROM,数模转换器DAC等。DDS有两个主要缺点:一是输出频率低,二是输出频谱中杂散多。输出频率低主要受DDS工作频率的限制,随着微电子技术的发展,这个缺陷会逐渐得到弥补。DDS输出频谱中的杂散是DDS所固有的,这是由DDS的工作方式决定的。
DDS的基本工作原理是:相位累加器在N位频率控制字FTW的控制下,以参考时钟频率fc为采样率,产生待合成信号的数字线性相位序列,将其高M位作为地址码通过正弦查询表ROM变换,产生L位对应信号波形的数字序列S(n),再由数模转换器将其转换为阶梯模拟电压波形S(t),最后由具有内插作用的低通滤波器LPF将其平滑为连续的正弦波形作为输出。FTW和fc时钟频率共同决定了DDS输出信号的频率fo,它们之间关系满足:
本文中的DDS芯片采用的是Analog Device公司生产的AD9852芯片,时钟频率最高可以达到300MHz,内部集成了12位DAC,相位累加器的位数为48位,并且具有FSK,PSK等数字调制功能。AD9852是具有高集成度的DDS芯片,内部结合有高速性能的DAC和一个比较器,构成了一个数字可编程的合成器。当给定一个精确的参考时钟源时,AD9852就会产生一个高稳定度,频率、相位及幅度均可编程的正弦波输出。AD9852的频率控制字达到48位,使其频率分辨率可达1μHz。其相位截断到17位,使得AD9852具有极好的自由杂散动态范围SFDR。AD9852还提供14位的数字控制的相位调制。其结构框图如图4所示。
整机上电复位后,为设置某一频率值,需要将频率控制字从高位至低位依次以并行方式写入AD9852的地址04h至地址09h,VreilogHDL程序代码如下:
AD9852内嵌电流输出型DAC,改变其输出幅值有两种方法:1)AD9852的输出最大幅值由连接至56引脚的电阻Rset决定,最大满摆幅输出电流为20mA,电阻Rset与输出电流Iout的关系为:Iout=39.9/Rset;2)AD9852的地址21h、22h为幅度控制寄存器,更改其控制字即可改变输出信号幅值。
整机上电复位后,为设置某一幅值,需要将幅度控制字从高位至低位依次以并行方式写入AD9852的地址21h、22h,VreilogHDL程序代码如下:
2.4 AM设计
基于2.3讨论的幅度控制设计,加入外调制信号可进一步实现AM调制,其中,外部调制信号的产生框图如图5所示:
图5中,RAM存储外调制信号波形,本文中需要存储正弦波波形,由RAM和FPGA共同构建NCO。存储的数值由上位机计算得出,并通过FPGA写入RAM中。RAM中的数据被FPGA读出后,由数字乘法器对其进行放大,乘系数因子由AM的调幅深度决定。向AD9852的地址21h、22h(幅度控制寄存器)写入外部调制信号所对应的波形数据,即可实现调制速率、调制深度均可控的AM调制。
2.5 波形输出设计
AD9852所产生的信号直接由器件内部的余弦DAC输出,内部不含低通滤波器,故要对其输出信号进行滤波处理。本文中,为了降低AD9852内部系统时钟的干扰,采用了具有下降速度更快、且较窄过渡带特性的7阶椭圆滤波器。如图6所示。
AD9852输出信号的幅度范围较小,需要根据实际应用情况进行放大处理,本文采用运算放大器LM7171搭建负反馈放大电路。
3 结束语
本文介绍了基准源的设计方法,采用DDS技术,具有频率分辨率高、相位连续、低相噪低杂散等优点。基准源的频率、幅度均可控。同时,论述了AM的实现方法,相对于传统模拟方式的设计方法,更加轻便、小巧,且线性度良好,便于校准和批生产。该DDS已使用于便携式信号源中,经实测整机系统运行稳定,在总参某项目中得到实际应用,达到了预期的目标,具有推广价值。
上一篇:固态继电器的动态功耗和设计考量
下一篇:用于时间交织ADC的高精度开环跟踪保持电路设计
推荐阅读最新更新时间:2023-10-17 15:46
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC