采用差分PulSAR ADC AD7982转换单端信号

最新更新时间:2013-07-14来源: 维库电子市场关键字:差分  PulSAR  ADC  AD7982  单端信号 手机看文章 扫描二维码
随时随地手机看文章

         电路功能与优势

  许多应用都要求通过高分辨率、差分输入ADC来转换单端模拟信号,无论是双极性还是单极性信号。本直流耦合电路可将单端输入信号转换为差分信号,适合驱动PulSAR系列ADC中的18位、1 MSPS器件AD7982。该电路采用单端转差分驱动器ADA4941-1 和超低噪声5.0 V基准电压源ADR435 ,可以接受许多类型的单端输入信号,包括高压至低压范围内的双极性或单极性信号。整个电路均保持直接耦合。如果需要重点考虑电路板空间,可以采用小封装产品,图1所示的所有IC均可提供3 mm × 3 mm LFCSP或3 mm × 5 mm MSOP小型封装。

 

图1:单端转差分直流耦合驱动器电路(原理示意图)

  电路描述

  AD7982的差分输入电压范围由REF引脚上的电压设置。当VREF = 5 V时,差分输入电压范围为 ±VREF = ±5 V。从单端源VIN到ADA4941-1的OUTP的电压增益(或衰减)由R2与R1之比设置。R2与R1之比应等于VREF 与输入电压峰峰值VIN之比。当单端输入电压峰峰值为10 V且 VREF = 5 V时,R2与R1之比应为0.5。OUTN上的信号为OUTP信号的反相。R1的绝对值决定电路的输入阻抗。反馈电容CF根据所需的信号带宽选择,后者约为1/(2πR2CF)。20 Ω电阻与2.7 nF电容构成3 MHz单极点低通噪声滤波器。电阻R3和R4设置AD7982的IN?输入端的共模电压。

  此共模电压值等于VOFFSET2 × (1 + R2/R1),其中VOFFSET2 = VREF × R3/(R3 + R4)。电阻R5和R6设置ADC的IN+输入端的共模电压。此电压等于VOFFSET1 = VREF × R5/(R5 + R6)。ADC的共模电压(等于VOFFSET1)应接近VREF/2,这意味着R5 = R6。表1列出了适合常用输入电压范围的一些标准1%允许电阻值。

表1:适合常用输入电压范围的电路值和电压

 

  请注意,ADA4941-1采用+7 V和?2 V电源供电。由于各路输出的摆幅必须达到0 V至+5 V,因此正电源电压应比+5 V高数百毫伏,负电源电压应比0 V低数百毫伏。本电路选择+7 V和?2 V的电源电压。+7 V电源还能提供足够的裕量,为ADR435供电。只要ADA4941-1上的绝对最大值总电源电压不超过12 V,并且满足ADR435的裕量要求,则也可以使用其它电压。

  AD7982需要一个 +2.5 V supply for VDD电源以及一个VIO 电源(图1未显示),后者的电压可以在1.8 V至5 V之间,取决于I/O逻辑接口电平。

  本电路对电源时序不敏感。在瞬间过压条件下,AD7982输入端可以承受最高±130 mA的电流。

  AD7982 SPI兼容串行接口(图1未显示)能够利用SDI输入,将几个ADC以菊花链形式连接到单个三线式总线上,并提供一个可选的忙闲指示。采用独立电源VIO时,该器件与1.8V、2.5V、3V和5V逻辑兼容。

  为了使本文所讨论的电路达到理想的性能,必须采用出色的布线、接地和去耦技术。至少应采用四层PCB:一个接地层、一个电源层和两个信号层。

  所有IC电源引脚都必须采用0.01 μF至0.1 μF低电感、多层陶瓷电容(MLCC)对接地层去耦(为简明起见,图1未显示),并应遵循“了解更多信息”部分所引用IC的各数据手册中提出的建议。

  有关推荐的布线方式和关键器件位置,应参考产品*估板。请在器件的产品主页上查看(见“了解更多信息”部分)。

  常见变化

  ADR43x 系列基准电压源可以提供与ADC接口的各种不同基准电压值。

关键字:差分  PulSAR  ADC  AD7982  单端信号 编辑:探路者 引用地址:采用差分PulSAR ADC AD7982转换单端信号

上一篇:一种高精度BiCMOS电流模带隙基准源
下一篇:基于TPS759XX多片信号处理系统的电源设计

推荐阅读最新更新时间:2023-10-12 22:22

基于DSP和MAX1420的高速数据采集系统设计
    1 引言     数据采集系统是通信与信息技术领域中重要的功能模块,应用广泛。而传统的数据采集系统大多以单片机或中规模数字电路为核心,其模数转换器(A/D转换器)采样速率较低。显然传统数据采集系统不能完全满足高速、高精度及具有数字信号处理功能要求,因此,这里提出一种基于DSPTMS320C6713和A/D转换器和MAX1420的高速数据采集系统。该系统采用DSP控制MAX1420实现高速数据采集,完成必要的数据通信与数据存储功能。其中,数据通信是将系统所采集的数据经通信接口传给上位机;而数据存储是系统存储必要数据,防止由于系统掉电而丢失数据。另外,DSP除完成系统控制外,还可通过编程设置实现对采集数据进行实时数字信号处
[嵌入式]
[单片机框架][bsp层][nrf51822][nrf51422][nrf51802][bsp_adc] ADC配置和使用
Analog to Digital Converter (ADC) The 10 bit incremental Analog to Digital Converter (ADC) enables sampling of up to 8 external signals through a front-end multiplexer. The ADC has configurable input, reference prescaling, and sample resolution (8, 9, and 10 bit). Note: The ADC module uses the same analog inputs as
[单片机]
ATmega64 ADC噪声抑制模式
当SM2..0 为001 时, SLEEP 指令将使MCU 进入噪声抑制模式。在此模式下,CPU 停 止运行,而ADC、外部中断、两线接口地址配置、定时器/ 计数器0 和看门狗继续工作。 这个睡眠模式只停止了clkI/O、clkCPU 和clkFLASH,其他时钟则继续工作。 此模式提高了ADC 的噪声环境,使得转换精度更高。ADC 使能的时候,进入此模式将 自动启动一次AD 转换。ADC 转换结束中断、外部复位、看门狗复位、BOD 复位、两线 接口地址匹配中断、定时器/ 计数器0 中断、SPM/EEPROM 准备好中断、外部中断 INT7:4,或外部中断INT3:0 可以将MCU 从ADC 噪声抑制模式唤醒。
[单片机]
无需精密电阻的DAC输出转换为信号的电路
     电路功能与优势      将宽带DAC互补电流输出转换为单端信号的传统方法是使用中心抽头变压器,或者在差分转单端配置中使用一个单通道运算放大器。然而,变压器的低频非线性可能会限制其在DC附近使用;运算放大器方法则要求电阻严格匹配,以提供直流共模抑制、负载阻抗和互补DAC输出之间的增益匹配。如果匹配有误差,则最终输出也会产生误差。本电路利用差分接收放大器AD8130实现简单的差分转单端功能,无需使用昂贵的精密电阻,从而以更少的元件提供更高的精度。      AD8130还有一个优势,即具有业界领先的交流共模抑制性能(10 MHz时为70 dB)。可以利用这一特性抑制DAC数字地层与接收器模拟地层之间的噪声,这是
[模拟电子]
我国米级差分导航模块技术成熟 精度提升至1米
    5月22日从第五届中国卫星导航学术年会中获悉,由泰斗微电子科技有限公司研发的低成本米级差分定位导航模块已具备大规模应用的基础。通过该产品可使导航定位精度由目前的10米提升至1米左右。   “目前该产品在技术、产能等方面均已成熟。只待配套基础设施如地基增强站的跟进,就能实现大规模应用。”该公司副总经理孙功宪表示,目前我国正大力推进地基增强站的建设,预计不久后便能满足其应用需求。   据介绍,为适应多样化、细分化的市场需求,泰斗微电子自主研发了这项产品。模块内部集成了该公司自主研发的BDS B1/GPS L1双模SOC基带芯片,内置伪距差分定位算法,支持原始观测量输出,为车载、船载等导航终端产品的制造提供了定位精度更高、低功耗、
[手机便携]
示波器设计—双通道ADC驱动
本章节为大家讲解示波器的ADC驱动,采用STM32自带ADC实现。关于STM32F429的ADC,可以说处处有地雷,不小心就踩上了,如果简单的使用,不会发现,复杂使用就很容易踩到了。 6.1 3个ADC的快速交替采样 6.2 双通道ADC采样 6.3 拓展阅读 6.4 总结 6.1 3个ADC的快速交替采样 起初二代示波器是打算像一代示波器那样,准备做成3ADC(ADC1,ADC2和ADC3)快速交替采样,后期才改成双通道。这里将3ADC的各种奇葩问题也给大家做个说明,防止大家踩坑。 3个ADC快速交替采样的两个可选的方案及其存在的问题。 6.1.1 方案一 依然采用一代示波器那种方式,3个ADC都独
[测试测量]
示波器设计—双通道<font color='red'>ADC</font>驱动
STM32f407的数字采集电路ADC的设计与使用
(1)简介 stm32 具有2路12位的ADC,具有18个通道(其中两个为内部通道)。各通道 的 ADC转换可以单次,连续,扫描或者间断模式执行。 ADC的数据可以选择左对齐或者右对齐存储在16位的数据寄存器里面。 其中模拟看门狗可以检查输出的电压是否在设定的范围内。 (2)ADC的主要技术指标 分辨率:12分辨率,不能够测量负压,无符号。做小的量化单位LSB=Vref+/2^12. 0-3.3V 时每份度为0.805mV 0-10V 时10V/4096=2.44mv 转换时间: 采样一次至少14个时钟周期,ADC的时钟频率最高14MHZ,也就是说最短时间1us.理论上可以采样50
[单片机]
DSP 与数据转换器协同工作所必须考虑的10 大因素
假设您接到一项工作任务,设计一套由 DSP 与DAC与ADC等模拟器件组成的信号处理系统。如果您考虑到几个重要因素,工作就会非常简单。下面就来谈谈设计工作中应该考虑的这几个因素。 详细了解应用类型 第一步需要了解应用类型。对于控制型应用,既需要应对突发的大量数据处理情形,也要考虑间歇的闲置状态;而对于音频应用,则需要处理连续数据流的能力。了解应用的具体需求将有助于选择适当的接口和正确的数据读取方法。 评估系统速率 第二步需要了解数据采样的速率。举例来说,音频系统可能是一部 CD 播放机,采样率为 96 kHz,也可能是电话语音系统,采样率仅为 8 kHz。当然,也可能是其他系统,如 ADSL 质量测量应用,采样速率
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved