用数字控制提高无桥PFC性能

最新更新时间:2013-07-27来源: 与非网关键字:数字控制  无桥PFC  功率因数校正 手机看文章 扫描二维码
随时随地手机看文章

由于效率要求不断增长,许多电源制造商开始将注意力转向无桥功率因数校正(PFC)拓扑结构。一般而言,无桥PFC可以通过减少线路电流路径中半导体元器件的数目来降低传导损耗。尽管无桥PFC的概念已经提出了许多年,但因其实施难度和控制复杂程度,阻碍了它成为一种主流拓扑。

随着一些专为电源设计的低成本、高性能数字控制器上市,越来越多的电源公司开始为PFC设计选用这些新型数字控制器。相比传统的模拟控制器,数字控制器拥有许多优势,例如:可编程配置,非线性控制,较低器件数目以及最为重要的复杂功能实现能力(模拟方法通常难以实现)。


大多数现今的数字电源控制器(例如:TI的融合数字电源控制器UCD30xx)都提供了许多的集成电源控制外设和一个电源管理内核,例如:数字环路补偿器,快速模数转换器(ADC),具有内置停滞时间的高分辨率数字脉宽调制器(DPWM),以及低功耗微控制器等。它们都对无桥PFC等复杂高性能电源设计具有好处。


数字控制的无桥PFC

在其他无桥PFC拓扑结构中,图1是一个已被业界广泛采用的无桥PFC实例。它具有两个DC/DC升压电路,一个由L1、D1和S1组成,另一个则由L2、D2和S2组成。D3和D4为慢恢复二极管。通过参考内部电源地,分别检测线路(Line)和中性点(Neutral)电压,测量得到输入AC电压。通过对比检测到的线路和中性点信号,固件便可知道它是一个正半周,还是一个负半周。在一个正半周内,第一个DC/DC升压电路(L1-S1-D1)有效,并且升压电流通过二极管D4回到AC中性点;在一个负半周内,第二个DC/DC升压电路(L2-S2-D2)有效,并且升压电流二极管通过D3回到AC线。像UCD3020这样的数字控制器用于控制这种无桥PFC。


无桥PFC基本上由两个相升压电路组成,但在任何时候都只有一个相有效。对比使用相同功率器件的传统单相PFC,无桥PFC和单相PFC的开关损耗应该相同。但是,无桥PFC电流在任何时候都只通过一个慢速二极管(正半周为D4,负半周为D3),而非两个。因此,效率的提高取决于一个二极管和两个二极管之间的传导损耗差异。另外,通过完全开启非当前的开关可以进一步提高无桥PFC效率。例如:在一个正半周内,在S1通过PWM信号控制的同时,S2可以完全开启。当流动的电流低于某个值时,MOSFET S2压降可能低于二极管D4,因此,返回电流部分或者全部流经L1-D1-RL-S2-L2,然后返回AC源。这样,传导损耗被降低,电路效率也能够提高(特别是在轻载情况下)。同样,在一个负半周内,S2开关时,S1被完全开启。图2显示了S1和S2的控制波形。


自适应总线电压和开关频率控制


传统上,效率指标在高压线路和低压线路上都规定为满载。现在,计算服务器和远程通信电源等大多数应用要求,除在满载时,在10%-50%负载范围时,效率也应当满足标准规范。在大多数AC/DC应用中,系统具有一个PFC和一个下游DC/DC级,因此,我们将根据整个系统来测量效率。若想提高轻载时的总系统效率,一种方法是降低PFC输出电压和开关频率。这要求了解负载信息,而这项工作通常通过使用一些额外电路,测量输出电流来实现。然而,采用数字控制器,便不再需要这些额外电路。在输入AC电压和DC输出电压相同时,输出电流与电压环路输出成正比。因此,如果我们知道电压环路的输出,我们便可以相应地调节频率和输出电压。使用数字控制器以后,电压环路通过固件来实现。其输出已知,因此,实现这种特性十分容易,并且成本比使用模拟方法要低得多。


通过变流器实现电流检测


无桥PFC的难题之一是,如何检测整流后的AC电流。如前所述,AC返回电流(部分或者全部)可能会流经非当前的开关,而非慢速二极管D3/D4。因此,在接地路径中,使用分流器来检测电流的方法(通常在传统PFC中使用)已不再适用。取而代之的是使用变流器(CT)来检测,且每相一个(图1)。这两个变流器的输出整流后结合在一起,以产生电流反馈信号。由于在任何时候都只有一个变流器具有整流输出信号,因此,即使将它们结合在一起,任何时候也都只有一个反馈电流信号。

如图3、4所示,由于变流器放置在开关的正上方,因此,它只检测开关电流(只是电感电流的上升部分)。在数字控制实现时,在PWM导通时间Ta中间测量该开关电流信号。它是一个瞬时值,在图3、4中以Isense表示。仅当该电流为连续电流时,测得的开关电流Isense才等于平均PFC电感电流(图3)。当该电流变为图4所示非连续状态时,Isense将不再等于平均PFC电感电流。为了计算电感平均电流,应建立在一个开关周期内,中间点检测电流Isense和平均电感电流之间的关系,并且这种关系应同时适用于连续导通模式(CCM)和非连续导通模式(DCM)。

20120111_PM_POW_TS_42.PDF

关键字:数字控制  无桥PFC  功率因数校正 编辑:探路者 引用地址:用数字控制提高无桥PFC性能

上一篇:MAX146/MAX147的原理及应用电路
下一篇:非隔离式电源的共模电流

推荐阅读最新更新时间:2023-10-12 22:23

Boost型功率因数校正器的电磁兼容研究
摘要:介绍了一种采用无源功率因数校正方法降低电源谐波含量的方案。实验结果表明,该方案成本低、性能好,容易达到各项EMC标准,适合于中小功率电源。 关键词:功率因数校正;电磁兼容;谐波抑制 引言 为了减少对交流电网的谐波污染,已经推出了一些限制电流谐波的标准,如IEC100032ClassD标准,要求必须采取措施降低输入电网的电流谐波含量,提高功率因数。 传统的二极管和电容对输入信号进行整流滤波时,只在输入交流电压的峰值部分才有输入电流,导致产生了很大的电流谐波含量,严重干扰了电网,远不能达到标准要求。为了使输入电流谐波满足要求,必须加功率因数校正(PFC)。比较成熟且应用广泛的是两级方案,它们有各自的功率器件和控制电路。PFC级
[电源管理]
三相功率因数校正PFC)技术的综述(1)
摘要:综述了三相功率因数校正电路发展现状,并对典型拓扑进行分析比较。 关键词:三相整流器;谐波;功率因数校正   1 引言 近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。电力电子装置已成为电网最主要的谐波源之一。我国国家技术监督局在1993年颁布了《电能质量公用电网谐波》标准(GB/T14549-93),国际电工委员会也于1988年对谐波标准IEC555?2进行了修正,另外还制定了IEC61000-3-2标准,
[电源管理]
三相<font color='red'>功率因数校正</font>(<font color='red'>PFC</font>)技术的综述(1)
IR推出IR115x功率因数校正IC系列
全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 推出IR115x系列集成式μPFC功率因数校正 (PFC) IC,适用于多种AC-DC应用,包括照明、LCD/PDP电视和游戏机的开关式电源 (SMPS) 、风扇、空调,以及300 W至8 kW的不间断电源 (UPS) 。 IR115x IC系列采用IR的单周期控制 (OCC) 技术,提供高功率因数 (PF)、低总谐波失真 (THD) 和出色的DC总线稳压功能,同时比传统的解决方案大幅减少了元件数目、PCB面积和设计时间。该 IC系列能够在连续导通模式控制下运行升压式PFC转换器,提供超过85-264
[电源管理]
基于AVR的直流电机高精度数字控制系统
本控制系统以永磁式直流力矩电机为对象,其额定工作电压为27 V,堵转电流为5 A,最大转速为900 r/min。 控制系统硬件平台采用ATMEL公司的Atmega128单片机和ALTERA公司的EPM7128系列CPLD芯片以及直流电机控制芯片HIP4080。在硬件平台上运行电机转动角度和速度的控制程序,实现高精度控制,并在PC机界面上观察电机状态。该系统具有精度高和通用性良好等特点,在性价比方面有很大优势,可以应用于教学实验。 1 控制系统的硬件设计 1.1 系统硬件结构 本系统主要由微控制器外围电路、旋转编码器信号检测电路和电机驱动电路构成。系统的硬件结构如图1所示。电机的控制逻辑由Atmega128实现。单片机采集
[单片机]
基于AVR的直流电机高精度<font color='red'>数字控制</font>系统
浅谈数字控制UPS电源技术及应用
传统的UPS采用模拟电路控制,对于生产厂家和用户而言,无论是相控技术还是SPWM技术,模拟控制存在诸多局限性。随着信息技术的发展,高速数字信号处理芯片(Digital Signal Processor, DSP)的出现,使得数字化的控制在更广阔电气控制领域中应用有了可能性,也成为主要发展趋势之一。 一、数字控制UPS的应用优势 有了高速数字信号处理芯片的支持,采用数字化的控制策略不仅可以较好的解决UPS电源模拟控制里的有关问题,而且还增加了UPS电源模拟控制中很难实现的一些控制功能,其主要应用优势有: (1)数字化控制可采用先进的控制方法和智能控制策略,使得UPS的智能化程度更高,性能更加完美。智能化控制代表了自动控制的最新发
[电源管理]
浅谈<font color='red'>数字控制</font>UPS电源技术及应用
单级功率因数校正LED驱动电源设计
在能源危机和气候变暖问题越来越严重的今天,节能与环保已成为社会焦点议题。LED因其高效、节能、环保、寿命长、色彩丰富、体积小、耐闪烁、可靠性高、调控方便等诸多优点等特点受到人们的广泛关注,被认为是21世纪最有前途的照明光源。传统的白炽灯效率低、耗电高;荧光灯省电,但使用寿命短、易碎,废弃物存在汞污染;高强度气体放电灯存在效率低、耗电高、寿命短、电磁辐射危害等缺点;若能以 LED照明 取代目前的低效率、高耗能的传统照明,无疑能缓解当前越来越紧迫的能源短缺和环境恶化问题。由于LED自身的伏安特性及温度特性,使得LED对电流的敏感度要高于对电压的敏感度,故不能由传统的电源直接给LED供电。因此,要用LED作照明光源首先就要解决电源
[模拟电子]
单级<font color='red'>功率因数校正</font>LED驱动电源设计
基于单片机的逻辑环流可逆调速系统设计
  1 引言   生产中有许多机械要求既能正转,又能反转,而且常需要快速起动和制动,即需要可逆调速系统。由模拟电路实现的可逆调速系统,线路复杂,调整困难,可靠性低,缺乏灵活的控制。因此,这里给出一种基于单片机的逻辑无环流可逆调速控制系统设计方案。该系统设计采用全数字电路,实现数字脉冲触发、数字转速给定检测和数字PI算法等功能,由软件实现转速、电流调节及逻辑判断和复杂运算,具有不同于一般模拟电路的最优化、自适应、非线性、智能化等控制规律,而且更改灵活方便。   2 系统组成和控制原理   2.1 系统组成   该数字逻辑无环流可逆调速系统是由 AT89C51 单片机实现双闭环控制、无环流逻辑控制、触发脉冲的形
[单片机]
基于两步换相控制策略的SR电机直接数字控制系统设计
1   引言   开关型磁阻(SR)电机调速系统(SRD)结构简单、坚固、成本低,调速性能优良,在宽广的调速范围内均具有较高的效率,应用前景十分广阔。但由于SR电机的双凸极结构和采用开关性的供电电源,振动、噪声是其突出的问题,这已成为SRD在更多范围内推广应用发挥其特长的主要障碍。过去人们对SRD的研究主要集中在SR电机本体设计、功率变换器及速度控制策略研究上,因为研究难度大,目前,只有少量文献论及SR电机振动、噪声研究[1~5]。      文[1]基于时域分析,得出结论:SR电机相绕组关断所激发的冲击振动是最主要的振动、噪声来源。为削弱这一振动,文[1]提出将相电流关断过程分成两步的“两步换相法”(参见图1):第一步
[工业控制]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved