ONSEMINCP125525W离线电流模式PWM控制器参考设计方案

最新更新时间:2013-09-18来源: 电子技术应用关键字:NCP1255  离线电流模式  PWM  控制器 手机看文章 扫描二维码
随时随地手机看文章
ONSEMI公司的NCP1255是一款soic-8封装的坚固高性能离线高集成PWM控制器,输入电压范围最高可达35V。该控制器具有过功率保护、掉电保护、轻载变频、斜率补偿、内建软启动、过载及短路自动定时恢复等功能。本文首先介绍芯片的简介、特性、内部框图及应用领域,并给出相应设计方案的设计原理图、元器件列表及PCB元件布局图。

The NCP1255 is a highly integrated PWM controller capable of delivering a rugged and high performance offline power supply in a SOIC−8 package. With a supply range up to 35 V, the controller hosts a jittered 65−kHz switching circuitry operated in peak current mode control. When the power on the secondary side starts to decrease, the controller automatically folds back its switching frequency down to a minimum level of 26 kHz. As the power further goes down, the part enters skip cycle while freezing the peak current setpoint.

To help build rugged converters, the controller features several key protective features: a brown−out, a non−dissipative Over Power Protection for a constant maximum output current regardless of the input voltage, two latched over voltage protection inputs – either through a dedicated pin or via the Vcc input − and finally, the possibility to externally adjust an auto−recovery timer duration.

The controller architecture is arranged to authorize a transient peak power excursion when the peak current hits the limit. At this point, the switching frequency is increased from 65 kHz to 130 kHz until the peak requirement disappears. The timer duration is then modulated as the converter crosses a peak power excursion mode (long) or undergoes a short circuit (short).

NCP1255主要特性:

• 65−kHz Fixed−frequency Current−mode Control Operation with 130−kHz Excursion
• Internal and Adjustable Over Power Protection (OPP) Circuit
• Adjustable Brown−Out Protection Circuit
• Frequency Foldback down to 26 kHz and Skip−cycle in Light Load Conditions
• Adjustable Slope Compensation
• Internally Fixed 4−ms Soft−start
• Adjustable Timer−based Auto−recovery Overload/Short−circuit Protection
• 100% to 25% Timer Reduction from Overload to Short−circuit Fault
• Double Vcc Hiccup for a Reduced Average Power in Fault Mode
• Frequency Jittering in Normal and Frequency Foldback Modes
• Latched OVP Input for Improved Robustness and Latched OVP on Vcc
• Up to 35−V Vcc Maximum Rating
• Extremely Low No−load Standby Power
• This is a Pb−Free Device

NCP1255应用:

• Converters requiring peak−power capability such as printers power supplies, ac−dc adapters for game stations.

 
图1. NCP1255内部方框图

NCP1255方案介绍:

The NCP1255 features several novelties compared to the NCP1250 previously released. The key feature of this component lies in its ability to push the switching frequency as the converter experiences a sudden power increase.However, this available extra power delivery can only be maintained for a certain amount of time. Beyond this duration, the controller gives up and enters an auto-recovery mode. This mode is perfectly suited for converters supplying highly variable loads such as Haswell-based notebook adapters or inkjet printers to cite a few possible examples.

General Description

The part is encapsulated in a SOIC−8 package but a reduced-feature set version (no brown-out and timers are internally set), the NCP1254, also exists in a tiny TSOP−6 package. Featuring a low-power BiCMOS process, the die accepts to work with VCC levels up to 35 V, safely clamping the drive voltage below 12 V. With its 15 _A start-up current, a high-value resistive network can be used in offline applications to crank the converter, naturally minimizing the wasted power in high-line conditions. In nominal load operations, the switching frequency of this peak-current mode control circuit is 65 kHz.

When the power demand goes up, the controller increases the peak current setpoint until it reaches the upper limit (0.8 V over Rsense, no opp). At this point, the output power demand increase can only be answered by further shifting the switching frequency up until it reaches another limit, 130 kHz. The maximum power is thus obtained at this moment. On the contrary, in light-load operations, the part linearly reduces its switching frequency down to 26 kHz and enters skip cycle as power goes further down. This mode of operation favors higher efficiency from high to moderate output levels and ensures the lowest acoustic noise in the transformer. To improve the EMI signature, a low-frequency modulation brings some dither to the switching pattern. Unlike other circuits, the dither is kept in foldback and peak excursion modes, continuously smoothing the noise signature.

The part hosts several new protection means such as an auto-recovery brown-out circuit. It is adjustable via a resistive divider. A double hiccup on the VCC brings down the average input power while in auto-recovery fault mode.

Board Description

The application schematic that appears in Figure 1 has been optimized to limit the leakage inductance losses and maximize the efficiency. For this purpose, the RDC clamping network has been replaced by a TVS-based circuitry, leaving enough swing to the 800 V MOSFET. Again, a 600 V type could have been used but would have hampered the drain voltage dynamics at turn off. A capacitor in parallel with the TVS limits its peak current at the switch opening and helps softening the radiated noise. Besides its excellent performance in standby, the TVS approach helps to maintain a safe clamping level given the wide output power excursion.

The chip supply is brought in via pin 6. Please note that the start-up resistances, besides cranking the controller, also perform the X2 discharge function for free. Upon start-up, for a voltage less than 18 V (typical), the internal consumption is limited to 15 _A maximum. It suddenly changes to a few mA as the controller starts to drive the 800 V MOSFET at 130 kHz when VCC reaches 18 V. The auxiliary voltage can go down to around 9 V before the controller safely stops the switching pulses. The first VCC capacitor C3 must be sized so that the auxiliary winding takes over before the UVLO is touched. The auxiliary winding is tailored to deliver an auxiliary voltage above 12 V and it drops to 10 V in no-load conditions. This guarantees a good no-load standby power performance as you will read below. A low-valued resistance (R13) limits the voltage excursion on this auxiliary voltage in short circuit situations.

Regulation is ensured by pulling down the dedicated pin via an optocoupler, driven from the secondary side by a NCP431. This new device does not require a 1 mA bias current as it was the case with the classical TL431. The absence of this bias current greatly contributes to reducing the no-load standby power.

NCP1255方案原理图:

  

图2. NCP1255方案原理图

NCP1255方案材料清单:





PCB元件布局图:

关键字:NCP1255  离线电流模式  PWM  控制器 编辑:探路者 引用地址:ONSEMINCP125525W离线电流模式PWM控制器参考设计方案

上一篇:MAXIM微功耗电流电量计解决方案
下一篇:电源测试:效率测量

推荐阅读最新更新时间:2023-10-12 22:26

模糊控制器的原理及使用方法
模糊控制器是一种基于模糊逻辑的控制器,通过将输入变量和输出变量都表示为模糊量,并运用模糊推理来实现针对复杂系统的控制。与传统的控制器相比,模糊控制器更加适合那些难以建模或者模型不精确的系统。 使用模糊控制器的基本流程如下: 1. 确定系统的输入和输出变量,以及它们的模糊集合; 2. 确定模糊控制器的规则库,规定每个输入模糊量与输出模糊量之间的关系; 3. 将模糊控制器与系统进行集成,获得系统的实时输入,并通过模糊推理来获得输出; 4. 将输出值转化成系统实际控制 信号 ,输送给被控对象。 模糊控制器的原理主要基于模糊推理,即通过将输入与输出都表示成模糊量,然后利用一系列的模糊规则进行推理,获得输出结果。常用的模糊推理方法包括最大值
[嵌入式]
60V 多相同步升压型 DC/DC 控制器 LTC3784
    加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2014 年 2 月 19 日 – 凌力尔特公司 (Linear Technology Corporation) 推出大功率两相单输出同步升压型 DC/DC 控制器 LTC3784,该器件采用高效率 N 沟道 MOSFET 取代了整流升压二极管。这款器件在无需任何散热器的情况下,可从 12V 输入以高达 97% 的效率产生 24V/12A 输出。LTC3784 启动时于 4.5V 至 60V 的输入电压范围内工作,启动后可保持输入低至 2.3VIN 工作,并且能调节输出电压至高达 60V。     当配置为以突发模式 (Burst Mode®) 工作时,LTC
[电源管理]
飞思卡尔最新数字信号控制器提供低功耗和高性能
随着全球对环保设施和工业设备的需求日益增长,制造商正在寻找新途径来提高能源效率同时降低系统成本。为了满足这些需求,飞思卡尔已经推出了一系列数字信号控制器(DSC),旨在以极具竞争力的价格提供节能的电机控制。 新的MC56F8006系列是嵌入式市场已有的最节能的DSC系列之一,也是最经济高效的DSC产品,有助于降低开发费用和能耗,适合各种电机控制和电机驱动应用,包括设备。DSC提供的先进的电机控制和能耗转换功能可以显著提高设备的效率和可靠性,并节约能源。例如,DSC数字控制的洗衣机的电机能够更有效地支持搅拌旋转,从而节约用水,缩短自旋周期,减少甩干时间,节约能耗。 MC56F8006 DSC用一套灵活的
[嵌入式]
STM32 TIM1 F1 四通道完全重映射PWM 配置
void TIM1_PWM_Init(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE , ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph
[单片机]
PIC32MX250F128B简单PWM输出
/********************************************************************* * * PIC32MX PWM demo * ********************************************************************* * FileName: pwm demo.c * Dependencies: plib.h * * Processor: PIC32MX * * Complier: MPLAB XC32 * MPLAB-X IDE * Company:
[单片机]
STM32F103C8T6定时器TIM4通道1、2输出PWM
这美妙的波形,真好,我他喵的终于把你弄出来了。 STM32F103C8T6使用定时器TIM4进行双通道的PWM输出: 下面的图是从STM32中文参考手册中截取的,定时器TIM4的通用和复用功能I/O 我选用的是TIM4_CH1和TIM4_CH2也就是PB6和PB7输出。 注意事项: 输出PWM是属于IO口的复用功能,所以在设置GPIO_Mode的时候一定要设置为GPIO_Mode_AF_PP也就是推挽复用。 我就是被这个卡了好长时间……,感觉自己蠢到家了。 我是用的正点原子的精英板学的32,所以一些写代码的习惯都是学的正点原子的。 下面是代码 timer.c #include timer.h //TIM
[单片机]
STM32F103C8T6定时器TIM4通道1、2输出<font color='red'>PWM</font>
基于Sugeno型模糊推理算法的模糊控制器及其应用
    摘要: 介绍了Sugeno型模糊推理算法的基本原理,给出了一种实现方法,并对其控制性能进行了仿真。     关键词: 模糊控制器  Sugeno型模糊推理  Mamdani型模糊推理     模糊控制器是模糊控制系统的核心,通常由软件编程实现,其控制算法的简繁直接影响到控制器的实时性。Mamdani型和Sugeno型是两种常用的模糊推理算法模型。在很多情况下,Sugeno型模糊推理算法具有较多的优点。 1 模糊控制器的工作过程     模糊推理过程就是运用模糊逻辑,进行从输入量到输出量映射的过程,可以分为以下5个步骤进行:     (1)输入量模糊化(Fu
[应用]
基于LPC2220低压无功补偿控制器设计
  摘要:本文设计了一种基于ARM7TDMI-S处理器 LPC2220 为主控制MCU,以复合开关为电容投切开关的压无功补偿 控制器 。该 控制器 能够实现自动采样计算、无功自动调节、故障报警保护、数据存储等功能。并具有LCD液晶菜单显示,直观地显示测量基本电网参数。软件设计采用基于嵌入式实时操作系统μC/OS-Ⅱ。并且可通过上位机进行实时电网参数、电容投切情况、及历史数据的远程查询。   关键词:无功补偿;复合开关; LPC2220 ;μC/OS-Ⅱ;远程查询   如何跟踪并快速有效地补偿无功功率,对电力系统的运行稳定、改善电能质量、降低线损、实现电力节能等方面起着重要的作用。   本文设计的无功补偿 控制器 在硬件
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved