高手打造智能无线供电台灯

最新更新时间:2013-09-28来源: 电子发烧友关键字:无线供电  DIY  台灯 手机看文章 扫描二维码
随时随地手机看文章

  无线供电是一个很吸引人的制作课题,许多电子类杂志和论坛上都有关于制作无线供电电路的介绍,这些电路虽各有千秋,但都有一个共同的不足之处,一是传输效率不太理想,二是不论有无接收器在工作,发射部分都一如既往地向外源源不断地发射能量,这是不能令人满意的。

  笔者所设计的这个无线供电装置,除了传输效率比较高,它还有一个显著的特点:能自动检测有无接收部分工作,只有检测到确有接收器在工作,它才会连续辐射无线电能,否则就始终只工作在低能耗的检测状态。其工作方框图如图1所示:

  

  

       发射部分采用CMOS电路与场效应管的组合,这种组合不仅效率高,而且控制也简单易行。发射线圈采用李兹线和蛛网式绕法,以取得较高的变换效率。电路见图2a:

     

          工作原理:

  1.发射部分

  振荡源由1/4个CD4011和遥控器用的晶体组成晶振电路,实测振荡频率为560kHz,这个频率对收音机的中波段有两处干扰:560kHz和1120kHz。因手边没有更合适的晶体选择,也只好将就了。

  4011是一个2输入端与非门,所以电路能否工作还取决于另一个输入端的电位,此输入端的电位由IC2(555电路)的状态决定, IC2输出占空比约等于1/10的方波,所以使高频振荡电路的工作与间歇时间比也等于1/10。

  4011的另3个与非门并联起来作为推动级,把振荡与输出级隔离开。为了能在小功率的推动下也能输出足够大的高频功率,输出级选用场效应管IRF634,场效应管是一种电压控制器件,原则上不消耗激励功率,但它的极间输入、输出电容很大,有几百pF,如果直接接到4011的输出端,会因为CMOS门电路的输出电流很小而使波形的上升时间和下降时间变大,而导致效率下降。所以我还在CMOS门电路的后面加了一对互补的三极管,此互补管接成射极输出,具有极小的输出电阻,可以使方波的上升和下降时间大大减小。实践证明,加上了这级电路后效率有了明显提高。而且,使空载和有负载时的电流有显著的区别,这就为无线供电的智能化提供了简单可靠的检测依据。

  在没有负载时,也就是说,无线供电的接收部分没有靠近发射线圈时,VT3的源极电流很小,R6上的电压降还不足以使VT4导通,所以IC3的第2脚上没有触发脉冲,第3脚上也没有高电平输出;一旦接收部分靠近了发射线圈,从发射级接收了足够的能量,于是使得VT3的源极电流增加,R6上也产生了足够大的电压,能够推动VT4导通,在VT4的集电极产生了幅度足够的负脉冲,驱动IC3使之输出高电平。此高电平通过VD2再送到晶振的控制端,使其工作在连续振荡状态,这样就完成了负载检测的任务。

  我们说这个电路是智能无线供电电路,其原因就是它能自动检测有无负载。没有负载时它工作在间歇状态以节约电能,一旦检测到负载就工作在连续状态,使其正常工作。

  图2中,Rp作为检测灵敏度调节;LED为工作状态指示(红灯间歇闪亮为检测状态,绿灯亮为连续工作状态);SA为维修开关,合上后,红灯连续亮,输出级连续工作,适于维修或弱负载时工作。

  2.接收部分

  实际上任何一个具有接收线圈的装置都可成为接收电路,这里只是给出其中一例,它可以实测接收部分的功率,也可以调整撤回路的谐振状态,使之灵敏度最高。电路很简单,就不再赘述原理了。电路见图2b:

  

  如果不测试接收距离和检测系统的转换效率,也可不装图2b的电路。  零件选择

  无线供电的效率与发射级的工作状态有关,同时也与作为发射电磁能量的线圈的质量也有非常密切的关系,所以发射线圈L1我采用36×Φ0.1mm的李兹线,绕在用光盘作骨架的蛛网板上。见图3:

  线圈的骨架用光盘制作,为了避免涡流损失,光盘上的金属镀层应当去掉。骨架的内径为66mm,用36股Φ0.1的漆包线绕11匝。图2b中的接收线圈也绕成蛛网式,用24股Φ0.1的多股漆包线绕8匝。

  

  高频输出级用大功率场效应管,如IRF系列的634、630均可,或其它耐压200V,电流5A,最大损耗功率大于20W以上的VMOS管。使用时需加上面积足够大的散热器。

  谐振电容C4要求用绦纶电容,耐压200V以上;C11、C12、C13、C14要求耐压35V以上。定时电容C5、C10要求容量准确,漏电较小,最好用钽电容,如果没有钽电容则应采用耐压25V以上的铝电解。C7、C8、C11、C12要紧靠IC4焊接。

  其他元件没有什么特殊要求。

  调试与安装

  先调发射部分。输入24V的直流电源,当调试开关处在断开状态时,LED的红灯会以大约1秒的周期闪亮,这说明IC2工作正常。合上图2a中的调试开关SA,使振荡部分连续工作,这时红灯将一直点亮。检查各点的直流工作点是否正常,这时整机电流约50mA,其中VT3的漏极电流约20mA左右。如果24V和9V两点的电压正常,可用示波器检查各关键点的波形。

  当各点波形基本正常后,用一个2200pF的绦纶电容(耐压250V)和一个1000pF的可变(可用多连可变并联而成),仔细调整可变使整机电流最小。量出并联的总电容,将一个或数个并联的固定的等效电容替换原来的固定和可变电容,并在线路板上焊好。

  断开维修开关SA使振荡器工作于间歇状态;旋转Rp到最大使LED绿灯亮,逐渐将Rp减小,使得LED的绿灯熄灭,红灯刚好闪亮。这时整机电流在10~20mA间摆动。

  将接收部分靠近发射线圈,断开接收部分的负载开关SA,则接收器上的指示灯LED会和发射部分的LED同步闪亮。同样,用一个0.01μF左右的固定电容接到谐振线圈的两端,逐步拉开发射线圈和接收线圈的距离,同时适当增减谐振电容的大小使指示灯最亮。调整好后,将电容固定下来,在线路板上焊好。如果用示波器观察谐振回路的波形,应该可以看到与发射线圈频率相同的正弦波。

  合上负载开关SA(图2 b),将接收线圈置于发射线圈正上方的5~10mm处,这时发射部分的双色LED的绿灯会自动点亮,说明发射部分己检测到负载,并工作在连续状态。如果再次移去接收线圈,绿灯随即自动熄灭,红灯再次闪动,说明智能部分的检测功能正常。如果检测功能不正常,应仔细调整Rp。

  当电路检测到负载时,发射部分的总电流约200~300mA,视负载轻重而变。

  无线供电台灯

  电路和图2b基本相同,只是将作为假负载的50Ω电阻换成了4只串联的大功率LED。接收线圈用Φ1.2mm或更粗的漆包线做成圆盘状的线圈,其内径为67mm绕8匝,两端各留25cm的引出线,将来就作为小台灯的支架。

  找一个光盘,去掉金属镀层,在适当地方钻两个小孔,将绕好的线圈引线穿过光盘上的小孔,并将线圈粘合在光盘上。

  将4个1W的LED装在自制的散热器上。

  另找一个直径80mm的小光盘(不必去膜)和一个大小适当的塑料瓶盖,作为制作台灯的灯罩的原材料。

  制作过程见下面系列图片。 发射板元件面

  


  发射板背面

  


  装发射部分的塑料盒

  

  发射板装在右边

  


  发射线圈装在左边

    测栅极电压波形

     


  测漏极电压波形

     


  测源极电压波形

              做灯罩用的材料


 

  将4个LED串联后装在散热板上

  

  做好后的灯头正面

  

  灯头背面

        台灯正面

  


  台灯侧面

  


  台灯背面

  


  台灯的底座

  


  底座下面是接收线圈

    发射已接电源,空载电流很小,此时只有红色指示灯在闪亮(图片中看不到)。

 


  把台灯放在发射线圈上方,很亮哦,此时整机电流升到200mA左右,盒子里面的绿色指示灯也亮了。

  

  小结

  1.从场效应管各点波形来看,输出级的工作状态并不十分理想,尤其是源极电压波形存在高次谐波,这样显然会使电路的转换效率降低。究其原因,应该是因为栅极驱动电压的波形过宽所致。如果使栅极波形改为更窄些的脉冲,使场效应管的导通角更小些,估计效率会得到提高。

  2.因制作时间比较仓促,从24V变9V直接采用了7809模拟稳压电路,其效率显然是十分低下的,如果改用开关稳压电源,则可大幅提高驱动部分的效率,使电路在间歇工作状态时更省电。

  3.本装置是模拟桌面无线供电系统而设计的,所以发射线圈和接收之间的距离大于12mm,这样也使转换效率有明显下降,因为两线圈距离越大,效率必然越低。

  4.无线台灯只是无线供电的一种应用,接收部分也完全可以用于无线充电、水下LED灯或旋转LED图形显示等领域。

  5.因为现成的无线供电模块VOX330不容易买到,所以电源采用了24V直流。如果手边有高压无线供电模块,直接采用220V交流电将会更具实用性。

关键字:无线供电  DIY  台灯 编辑:探路者 引用地址:高手打造智能无线供电台灯

上一篇:如何根据应用合理选择电池
下一篇:可以给iPhone/iPad充电的摇椅:iRock

推荐阅读最新更新时间:2023-10-12 22:27

DIY的不是耳放是寂寞 TOCCARE耳放特别版
在寂寞的雨夜完成了TOCCARE。今天上图,让更多的人来感受我的寂寞吧~ TOCCARE(由本坛AEON版主完成原型架构设计,贵宾午后红茶进化升级为平衡版本的胆结石耳放) Toccare电路 DIY制作、校音历时一月,终于在寂寞的冬夜制作完成。比起以前的单端版本胆结石,电路构架进化为平衡架构。电源、工作点再度调整和优化,可贵的是,全机的晶体管都是老茶多次试验后的优选型号!(声好,心意更可贵) 可以说,这次制作从架构、选管和工作点来说,已是TOCCARE巅峰之作!所以,我也用精品元器件来搭配! 电子管是用的英国冷门长屏方环军级长寿命管,周边采用AB碳膜
[模拟电子]
<font color='red'>DIY</font>的不是耳放是寂寞 TOCCARE耳放特别版
自己动手DIY制作一款直流稳压电源
    以后可能会更多去做一个电子类的DIY,但不同电器件要求电压不一样,总不能每次都买相应转压芯片,所以索性做一个直流稳压电源。   准备工作:   全铜线双 12V 单24V 30W 2.1功放板专用电源变压器 (净重 850克) 一个   已废电源机(内含风扇,散热片,电线若干) 一个   D25BX60整流桥 一个   50V 10000uF电解电容 一个   LM317T稳压集成电路 一个   5~10K欧姆可调电阻(3296型)一个   100欧电阻 两个   1N4007整流二极管 一个   类海绵宝宝体 一只   拆废弃电源机箱:      原本只是想要一个金属盒子打扮变
[电源管理]
英特尔推动笔记本DIY雄心遇冷
旨在推动更多笔记本电脑配件标准统一的计划未获主流制造商热情 在笔记本电脑的维修服务店,大学生小张正在为自己的笔记本电脑维修伤脑筋。他那台使用仅一年的惠普笔记本光驱和显示器连接轴出现了问题。售后服务处坚持认为是外力损伤,更换两个新部件的费用,明码标价要近6000元———几乎等于这台电脑全新时售价的一半。 这是每天都在众多笔记本品牌售后服务部门上演的片断。市场上买不到通用的零件,小张没有其他选择,除非放弃维修的念头。    笔记本电脑 也可以像台式机一样DIY吗? 对于那些曾经忍受过品牌厂商售后服务人员傲慢对待的人来说,自己攒一台笔记本大概是一种解脱。英特尔正在推行的一项计划,试图最终促成这种笔记本DIY的模式,其
[焦点新闻]
我的DIY红外半双工通信手持式掌机
实用单片机做有些小东西,由于空间有限,或单片机IO口有限,不想使用显示屏。那么怎么知道单片机的运行状态呢?本制作实现了ATMEGA16与 ATMEGA8之间通过红外双向收发。用ATMEGA16和LCD1602做成手持式掌机,ATMEGA8作为运行设备,掌机通过红外可以对运行设备进行读写操作。使运行设备更加简化,省却了显示部件、按键、通信数据线。 找来一个外壳,仅仅是使用外壳 这就是用来开孔的工具,一把锉 外壳底部 裁好的孔,刚好放下1602 开关 还有按键 按键的位置用一小块板子焊接按键 屏幕装好的样子 一个双面绿色万能板,质量挺好的,买的时候好像挺贵
[单片机]
我的<font color='red'>DIY</font>红外半双工通信手持式掌机
神级DIY:TI工程师打造混合能量采集装置
Will Cooper和Dave Smith是TI两位久负盛名的DIY达人。最近,他们经过通力合作,共同完成了一项让所有园丁都羡慕嫉妒恨的混合DIY项目。 Will和Dave都是MSP微控制器 (MCU) 领域的专家,他们二人组成了一个小团队,想要共同搭建一款基于TI MCU的高科技能量采集和植物供水系统。最终,他们凭借一套太阳能板、湿度传感器、一块电池、水泵和定时器实现了植物的远程灌溉。 这个系统的灵感源于Dave广受欢迎的 辣椒加油站 。这个DIY项目将他对园艺的热爱、创造力以及MSP领域的专业知识结合在了一起,最终打造了一个自动辣椒浇水系统。 当我把辣椒种在花盆中时,它们因为德州白天炎热
[半导体设计/制造]
神级<font color='red'>DIY</font>:TI工程师打造混合能量采集装置
全数字音频功放电路组装DIY详细步骤图解
  本文分享一则全数字音频功放电路组装的DIY详细步骤、所需材料及桌面音箱实现功能等内容,所使用数字功放板电路、开关电源、显示面板及线路焊接,到最终成型测试整体装配。   近些天自己DIY组装了一台小型全数字桌面功放,小巧玲珑的样子放在桌面上用于电脑放歌还比较般配,该功放特点如下:   1. 外观尺寸:铝合金型材外壳74.2mm& TI mes;89.6mm& TI mes;130mm   2. 输出功率:2& TI mes;3W(用于推动左右3W小音箱)、2& TI mes;15W(可用于推动书架式音箱)。(均不需散热器)   3. 供电方式:USB(仅限2×3W组)、内置电池3.6V(仅限2×3W组)、220V交流电,三种方式
[嵌入式]
专访SparkFun CEO:从硬件平台到服务提供商
本文编译自oshdata.com 今年秋天,开放硬件和电子产品供应商SparkFun Electronics发布了一系列新产品和服务。SparkFun成立于2003年,它不断创新,加速世界各地的工程师完成创意。我们与首席执行官Glenn Samala进行了深入对话,讨论了这些新产品的意义以及SparkFun下一步的发展方向。我们将讨论Artemis、RaspberryPi、MicroMod、ÀLa Carte(ALC)等。 SparkFun CEO Glenn Samala SparkFun Electronics是开源硬件社区的长期领导者。您的工程师拥有数十种经过认证的开源硬件产品,包括用于您的新Artemis平
[嵌入式]
专访SparkFun CEO:从硬件平台到服务提供商
古典蓝波管唱放 DIY设计
设计 初衷:唱放电路的根本无非就是信噪比、谐波失真及动态范围。关键是在取得高增益、加入RIAA均衡 网络 的前提下获得良好的信噪比及较低的失真。 个人认为,“第一级高放大倍数的五级管放大、第二级低内阻高负载能力低噪音的SRPP电路或者低内阻三极管组成一级共阴一级阴出”将是不错的 选择 。 理由是:在第二级屏级引入RIAA网络之后,后者变为该管的另一个负载,而该负载的阻抗在高频时急剧下降,造成负载加重,使高频特性变差。这就是有人说“反馈式高频不如衰减式”的主要原因。 因此在RIAA网络选取反馈式的前提下,第二级使用SRPP形式将是理想的选择,其在大动态范围内有高的输入阻抗和接近于1的传输系数,并且有很强
[模拟电子]
古典蓝波管唱放 <font color='red'>DIY</font>设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved