开关电源电路设计秘笈之解决电源电路损耗问题

最新更新时间:2013-10-11来源: 21ic关键字:开关电源  电源电路 手机看文章 扫描二维码
随时随地手机看文章

您是否曾详细计算过设计中的预计组件损耗,结果却发现与实验室测量结果有较大出入呢?本文介绍了一种简便方法,以帮助您消除计算结果与实际测量结果之间的差异。该方法基于泰勒级数展开式,其中规定(在赋予一定自由条件下)任何函数都可分解成一个多项式,如下所示:

 

 

如果意识到电源损耗与输出电流相关(可用输出电流替换X),那么系数项就能很好地与不同来源的电源功率损耗联系起来。例如,ao代表诸如栅极驱动、偏压电源和磁芯的固定开销损耗以及功率晶体管Coss充电与放电之类的损耗。这些损耗与输出电流无关。第二项相关联的损耗a1直接与输出电流相关,其典型表现为输出二极管损耗和开关损耗。在输出二极管中,大多数损耗是由于结电压引起的,因此损耗会随着输出电流成比例地增加。

类似地,开关损耗可通过输出电流关联项与某些固定电压的乘积近似得出。第三项很容易被识别为传导损耗。其典型表现为FET电阻、磁性布线电阻和互联电阻中的损耗。高阶项可能在计算非线性损耗(如磁芯损耗)时有用。只有在考虑前三项情况下才能得出有用结果。

计算三项系数的一种方法是测量三个工作点的损耗并成矩阵求解结果。如果损耗测量结果其中一项是在无负载的工况下得到(即所有损耗均等于第一项系数 a0),那么就能简化该解决方法。随后问题简化至容易求解的两个方程式和两个未知数。一旦计算出系数,即可构建出类似于图11.1、显示三种损耗类型的损耗曲线。该曲线在消除测量结果和计算结果之间的偏差时大有用处,并且有助于确定能够提高效率的潜在区域。例如,在满负载工况下,图1中的损耗主要为传导损耗。为了提高效率,就需要降低FET电阻、电感电阻和互联电阻。

 

 

 

 

实际损耗与三项式之间的相关性非常好。图11.2对同步降压稳压器的测量数据与曲线拟合数据进行了对比。我们知道,在基于求解三个联立方程组的曲线上将存在三个重合点。对于曲线的剩余部分,两个曲线之间的差异小于2%。由于工作模式(如连续或非连续)不同、脉冲跳频或变频运行等原因,其他类型的电源可能很难以如此匹配。这种方法并非绝对可靠,但是有助于电源设计人员理解实际电路损耗情况。

关键字:开关电源  电源电路 编辑:探路者 引用地址:开关电源电路设计秘笈之解决电源电路损耗问题

上一篇:开关电源电路设计秘笈之发挥电源效率最大化
下一篇:开关电源电路设计秘笈之阻尼输入滤波系列

推荐阅读最新更新时间:2023-10-12 22:28

开关电源转换器高频磁技术
  高频 开关电源 中用了多种磁元件,有一些基本的问题还需要研究解决。例如:   (1)随着 开关电源 的高频化,在低频下可以忽略的某些寄生参数,在高频下将会对某些电路性能(如开关尖峰能量、噪声水平等)产生影响。尤其是磁元件的涡流、漏电感、绕组交流电阻Rac和分布电容等,在低频和高频下的表现有很大的差别。虽然磁理论的研究已经有多年的历史,但 高频磁技术 理论作为电力电子学的学科前沿问题,应当受到人们的广泛重视。例如,磁心损耗的数学建模、磁滞回线的仿真建模、高频磁元件的计算机仿真建模和CAD、高频变压器一维和二维仿真建模等。有待研究的问题还有:高频磁元件的设计决定了高效率 开关电源 的性能、损耗分布和波形等,人们需要的是希望给出设计
[电源管理]
高亮度LED开关电源电路
图1是基于固定频率、高集成度PWM开关转换器MAX5035的高亮度LED电源原理图,输出电流可达1A。另一类似器件MAX5033的输出电流可以达到500mA。这款基于电感的buck调节器能够准确控制流过LED (或几个串联LED,总电压为12V)的电流。MAX5035的开关频率为125kHz,输入电压范围高达76V (需使用更高额定电压的输入电容和二极管)。此电路可以在较宽的输入电压范围内控制并保持恒定的LED电流。表2总结了该电路的设计规格。 图1. 通过调节控制电压(0V至3.9V),MAX5035 LED电流驱动器能够在LED_A和LED_K端产生近似350mA至0mA的输出电流。
[电源管理]
高亮度LED<font color='red'>开关电源电路</font>图
饱和电感及在开关电源中的应用
引言 饱和电感是一种磁滞回线矩形比高,起始磁导率高,矫顽力小,具有明显磁饱和点的电感,在电子电路中常被当作可控延时开关元件来使用。由于其独特的物理特性,使之在高频开关电源的开关噪声抑制,大电流输出辅路稳压,移相全桥变换器,谐振变换器及逆变电源等方面得到了日益广泛的应用。 1饱和电感的分类及其物理特性 1.1饱和电感的分类 饱和电感可分为自饱和和可控饱和二类。 1.1.1自饱和电感(Saturableinductor) 其电感量随通过的电流大小可变。若铁心磁特性是理想的(例如呈矩形),如图1(a)所示,则饱和电感工作时,类似于一个“开关”,即绕组中的电流小时,铁心不饱和,绕组电感很大
[电源管理]
开关电源设计之MOS管反峰及RCD吸收回路
对于一位 开关电源 工程师来说,在一对或多对相互对立的条件面前做出选择,那是常有的事。而我们今天讨论的这个话题就是一对相互对立的条件。(即要限制主 MOS管 最大反峰,又要 RCD 吸收回路功耗最小) 在讨论前我们先做几个假设: ① 开关电源的工作频率范围:20~200KHZ; ② RCD中的二极管正向导通时间很短(一般为几十纳秒); ③ 在调整RCD回路前主变压器和MOS管,输出线路的参数已经完全确定。 有了以上几个假设我们就可以先进行计算: 一﹑首先对MOS管的VD进行分段: ⅰ,输入的直流电压VDC; ⅱ,次级反射初级的VOR; ⅲ,主MOS管VD余量VDS;
[电源管理]
UC3842开关电源电路的保护障碍分析
用UC3842做的 开关 电源 的典型 电路 见图1。过载和短路保护,一般是通过在 开关 管的源极串一个 电阻 (R4),把电流信号送到3842的第3脚来实现保护。当 电源 过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个 电路 关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hiccup)保护。 在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能
[电源管理]
设计开关电源的一些关键问题
  对于开关电源的噪声,除了芯片本身,Layout的设计最为重要,记录一些相关的技巧。不少关于EMI的观念具有通用性。下面我们谈谈关于开关电源设计的一些关键问题。   AC和DC电流路径   开关电源在导通和关闭两种状态下的电流回路不尽相同,于是在部分支路上会出现阶跃电流(step current)(图1. C),这就是所谓需要关注的AC电流路径。   以PCB走线20nH/inch计算,典型buck converter的AC电流路径上电流变化大约是开关电源关闭转换时负载电流大小的1.2倍,是导通转换时负载电流的80%。高速场效应管的转换时间为30ns,Bipolar的转换时间为70ns;根据V=L*dI/dt,当
[电源管理]
设计<font color='red'>开关电源</font>的一些关键问题
保护LED电源电路的若干方法介绍
引言   近年来,随着LED技术的日趋成熟,LED光源因其具有使用低压电源、耗能少、适用性强、稳定性高、响应时间短、多色发光等的优点被越来越广泛地使用。 LED电源大都采用开关电源技术,输出多为可随LED正向压降值变化而改变电压的恒定电流源即恒流驱动 。根据LED的伏安特性,电压的微小变化可导致电流的很大变化,有可能损坏LED, 且开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差。因此驱动电源的可靠性影响了LED应用产品的寿命,为了保护开关电源自身和负载的安全,延长使用寿命,必须设计安全可靠的保护电路。   1 直通保护电路   半桥和全桥是开关电源常用的拓扑结构,“直通”对其有很大的威胁,
[电源管理]
保护LED<font color='red'>电源电路</font>的若干方法介绍
CW3524组成的稳压电源电路
当输入为-24V直流电压时,用CW3524组成的+12V稳压电源。由CW3524型集成脉宽调制器组成的双端开关稳压电源,输出电流为2A,输出电压为+12V。CW3524是本电源的核心元件,并直接向功率转换电路的开关功耗提供脉宽调制信号。开关频率由⑥脚的电阻R7和⑦脚的电容C4来确定。电位器RP1和电阻R1、R2提供取样电压,通过三极管VT1组成的共基极电路,由集电位经CW3524的①脚引入误差放大器的反向端,改变RP1的阻值应能保证输出电压在12V。②脚为误差放大器的同相端,它由CW3524中的5V基准电压,通过16脚加到电阻R4、R5、R6和二极管VD1分压电路而获取一基准电压。
[电源管理]
CW3524组成的稳压<font color='red'>电源电路</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved