如何有效保护锂电池的安全与寿命

最新更新时间:2013-11-20来源: OFweek电子工程网关键字:锂电池 手机看文章 扫描二维码
随时随地手机看文章

  理论上来讲,动力多串电池保护板已经没有太多的电子技术含量了,比如电路与软件处理,有太多的选择。其主要是把保护部分如何做到稳定,可靠,更安全,更实用,当然价格也是其中之一。想要真正的想把它做好,那是一件非常复杂细心而又漫长的轮回工作。如果要按经验与技术值的占比比值的话,技术只占20% 。经验要占到80% 。做好动力电池保护板没有个三五年的经验,还是有困难的。当然做好与能做是两回事。为什么会有这样的结论呢?

  保护板的方案电路并不复杂,只要在电池电子行业工作了一两年,设计个电路与抄袭人家一个电路不是什么难事。比如:多串动力电池他主要是高电压,大电流,高内阻工作(微电流),电池包工作环境的考量等等,这都牵扯到多年的电子专业综合经验。大到要对整个PACK的了解,小到一个电阻,电容或晶体管的选型,或是布板时的注意细节。总的一句话,保护板主要是稳定,可靠,安全的保护电池组,保证电池组的正常安全使用或使用得更久,其它添加的特有技术与功能,都是浮云。下面我们来讨论一下。

  动力电池保护板,顾名思义,它是用来保护电池不让损坏与延长电池的使用寿命。而且它只在电池出现极端问题的情况下作出最稳定最有效的保护防止出现意外。平时不应该动作,当然,监视工作是必须要的,就像我们的家用电器中的保险丝或保险开关一样。这是本文讨论分析的宗旨。

  保护项目及注意事项

  1.电压保护:过充,过放,这要根据电池的材料不同而有所改变,这点看似简单,但要细节上来看,还是有经验学问的。

  过充保护,在我们以往的单节电池保护电压都会高出电池充饱电压50~150mV。但是动力电池不一样,如果你要想延长电池寿命,你的保护电压就选择电池的充饱电压,甚至还要比此电压还低些。比如锰锂电池,可以选择4.18V~4.2V。因为它是多串数的,整个电池组的寿命容量主要是以容量最低的那颗电池以准,小容的总是在大电流高电压工作,所以衰减加快。而大容量每次都是轻充轻放,自然衰减要慢得多了。为了让小容量的电池也是轻充轻放,所以过充保护电压点不要选择太高。这个保护延时可以做到1S,防止脉冲的影响从而保护。

  过放保护,也是与电池的材料有关,如锰锂电池一般选择在2.8V~3.0V。尽量要比它单颗电池过放的电压稍高点。因为,在国内生产的电池,电池电压低于3.3V后,各颗电池的放电特性完全不一,因此是提前保护电池,这样对电池的寿命是一个很好的保护。

  总的一点就是尽量让每一颗电池都工作在轻充轻放下工作,一定是对电池的寿命是一个帮助。

  过放保护延滞时间,它要根据负载的不同而有所改变,比如电动工具类的,他的启动电流一般都在10C以上,因此会在短时间内把电池的电压拉到过放电压点从而保护。此时无法让电池工作。这是值得注意的地方。  MOS管的损坏主要是温度急剧升高,它的发热也是电流的大小及 本身的内阻来决定的,当然小电流,对MOS没什么影响,但是大电流呢,这个就要好好做些处理了, 在通过额定电流时,小电流10A以下,我们可以直接用电压来驱动MOS管。大电流,一定是要加驱动,给MOS足够大的驱动电流。以下在MOS管驱动有讲到工作电流,在设计的时候,MOS管上不能存在超过0.3W的功率。计算工式:I2*R/N。R为MOS的内阻,N为MOS的数量。如果功率超过,MOS会产生25度以上的温升,又因它们都是密封的,就算有散热片,长时间工作时,温度还是会上去,因为他没地方可散热。当然MOS管是没任何问题,问题是他产生热量会影响到电池,毕竟保护板是与电池放在一起的。

  过流保护(最大电流),此项是保护板必不可少的,非常关键的一个保护参数。保护电流的大小与MOS的功率息息相关,因此在设计时,要尽量给出MOS能力的余量。在布板的时候,电流检测点一定要选好位置,不能只接通就行,这需要经验值。一般建议接在检测电阻的中间端。还要注意电流检测端的干扰问题,因为它的信号很容易受到干扰。

  过流保护延时,它也是要根不同的产品做相应的调整。在此不多说了。

  3.短路保护:严格来讲,他是一个电压比较型的保护,也就是讲是用电压的比较直接关断或驱动的,不要经过多余的处理。

  短路延时的设置也很关键,因为在我们的产品中,输入滤波电容都是很大的,在接触时第一时间给电容充电,此时就相当于电池短路来给电容充电。

  4.温度保护:一般在智能电池上都会用到,也是不可少的。但往往它的完美总会带来另一方面的不足。我们主要是检测电池的温度来断开总开关来保护电池本身或负载。如果是在一个恒定的环境条件下,当然不会有什么问题。由于电池的工作环境是我们不可控的,太多太复杂的变化,因此不好选择。如在北方的冬天,我们定在多少合适?又如夏天的南方地区,又定多少合适?显然范围太宽不可控的因素太多,仁者见仁,智者见智的去选择了。

  5.MOS保护:主要是MOS的电压,电流与温度。当然就是牵扯到MOS管的选型了。MOS的耐压当然要超过电池组的电压,这是必须的。电流讲的是在通过额定电流时MOS管体上的温升了一般不超过25度的温升,个人经验值,只供参考。

  MOS的驱动,也许会有的人会讲,我有用低内阻大电流的MOS管,但为何还有蛮高的温度?这是MOS管的驱动部分没有做好,驱动MOS要有足够大的电流,具体多大的驱动电流,要根据功率MOS管的输入电容来定。因此,一般的过流与短路驱动都不能用芯片直接驱动,一定要外加。在大电流(超过50A)工作时,一定要做到多级多路驱动,才能保证MOS的同一时间同一电流正常打开与关闭。因为MOS管有一个输入电容, MOS管功率,电流越大,输入电容也就越大,如果没有足够的电流,不会在短时间做出完整的控制。尤其是电流超过50A时,电流设计上更要细化,一定要做到多级多路驱动控制。这样才能保证MOS的正常过流与短路保护。  MOS电流平衡,主要讲的是多颗MOS并起来用时,要让每一颗MOS管通过的电流,打开与关闭时间都是一致的。这就要在画板方面入手了,它们的输入输出一定要对称,一定要保证每一个管子通过的电流是一致这才是目的。

  6.自耗电量, 这个参数是越小越好,最理想的状态是为零,但不可能做到这一点。就是因为人人都想把这个参数做小,有很多人的要求更低,甚至离谱,我们想想,保护板上有芯片,它们是要工作的,可以做到很低,但是可靠性呢?应该是在性能可靠完全OK的情况下再来考量自耗电的问题。有些朋友也许进入了误区,自耗电分为整体的自耗电和每一串的自耗电。

  整体自耗电,如果在100~500uA都是没什么问题的,因为动力电池的容量本身就很大。当然电动工具的另外分析。如5AH的电池,放电500uA,要放多久,因此对整个电池组来讲是很微弱的。

  每串自耗电才最关键的,这个也不可能为零,当然也是在性能完全可行情况下进行,但有一点,每一串的自耗电量一定要一致,一般每一串的差别不能超过5uA。这点大家应该知道,如果每一串的自耗电不一时,那么在长时间搁置下,电池的容量一定会产生变化的。

  7.均衡:均衡这一块是此文章的论述的重点。目前最通用的均衡方式分为两种,一种就是耗能式的,另一种就是转能式的。

  A耗能式均衡,主要是把多串电池中某节电池的电量或电压高的用电阻把多余的电能损耗掉。它也分如下三种。

  一,充电时时均衡,它主要是在充电时任何一颗电池的电压高出所有电池平均电压时,它就启动均衡,无论电池的电压在什么范围,它主要是应用在智能软件方案上。当然如何定义可以由软件任意调整。此方案的优点它能有更多的时间去做电池的电压均衡。

  二,电压定点均衡,就是把均衡启动定在一个电压点上,如锰锂电池,很多就定在4.2V开始均衡。这种方式只是在电池充电的末端进行,所以均衡时间较短,用处可想而知。

  三,静态自动均衡,它也可以在充电的过程中进行,也可以在放电时进行,更有特点的是,电池在静态搁置时,如果电压不一致时,它也在均衡着,直到电池的电压达到一致。但有人认为,电池都没工作了,为什么保护板还是在发热呢?

  以上三种方式都以是参考电压来实现均衡的。但是,电池电压高不一定代表容量就高,也许截然相反。以下论述。

  其优点就是成本低,设计简单,在电池电压不一致时能起到一定的作用,主要体现在电池长时间搁置自耗引起的电压不一致。理论上是有微弱的可行性。

  缺点,电路复杂,元件多,温度高,防静电差,故障率高。  具体探讨如下。

  当新单体电池分容分压分内阻过后组成PACK,总会有各别的单体容量偏低,而往往容量最低的那颗单体,在充电的过程中电压一定是上升最快的,也是它最先到达启动均衡电压的,此时,大容量的单体还没达到电压点而没有启动均衡,小容量的确开始均衡了,这样每一次的循环工作,这颗小容量的单体一直处于饱充饱放的状态下工作,而它也是衰老最快的,同时内阻自然也会慢慢的比其它的单体增高,从而形成一个恶性循环。这是一个极大的弊端。

  元件越多,故障率自然就高了。

  温度,可想而知,耗能式的,是想把所谓多余的电量用电阻以发热的形式来耗掉多余的电能,它确成了名副其实发热源。而高温对电芯本身来讲是非常致命的一个相当因素,它可能会让电池燃烧,也可能会引起电池爆炸。本来我们是在想尽一切办法去减少整个电池包的温度产生,而耗能均衡呢?同时它的温度高得惊人,大家可以去测试一下,当然是在全封闭的环境下。总的来说,它是一个发热体,热是电池的致命天敌。

  静电,我个人设计保护板时,从来不用小功率的MOS管,哪怕一颗都不用。因为本人在这一块吃过太多的亏了。就是MOS管的静电问题。先不说小MOS在工作的环境,就说在生产加工PCBA贴片时,如果车间的湿度低于60%,小MOS生产出来的不良率都会超过10%以上,然后再湿度调到80%。小MOS的不良率为零。可以试试。这要表明一个什么问题呢?如果我们的产品在北方的冬天,小MOS是否能通过,这需要时间来验证的。再有,MOS管的损坏只有短路,如果短路那可想而知,就意味着这组电池马上要损坏。更何况我们的均衡上的小MOS用得还不少呢。这时有人会恍然,难怪退回来的货,都是因为均衡坏掉而引起单体电池损坏,而且都是MOS坏掉了。这时电芯厂与保护板厂开始扯皮了。是谁的错呢?

  B能量转移式均衡,它是让大容量的电池以储能的方式转移到小容量的电池,听起来感觉很智能很实用。它也分容量时时均衡与容量定点均衡。它是以检测电池的容量来做均衡的,但是好像没考虑到电池的电压。可以想想,以10AH的电池组为例,假如电池组中有一颗容量在10.1AH,一颗容量小点的在9.8AH,充电电流为2A,能量均衡电流为0.5A。这时10.1AH的要给小容量9.8AH的转能充电,而9.8AH的电池充电电流就是2A+0.5A=2.5A,这时9.8AH电池的充电电流就是2.5A,这时9.8AH的容量是补进去了,可是9.8AH电池的电压会是多少呢?显然会比其它电池的上升得更快,如果到了充电末端,9.8AH的一定会大大提前过充保护,在每一次的充放电循环,小容量电池一直处在深充深放的状态。而其它电池是否有充饱,不确定因素太多。

关键字:锂电池 编辑:探路者 引用地址:如何有效保护锂电池的安全与寿命

上一篇:各种类型UPS系统的实际应用分析
下一篇:一种串联锂电池均衡充电电池组的保护板方案

推荐阅读最新更新时间:2023-10-12 22:29

磷酸铁锂电池的放电特性及寿命
  磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。   STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电
[电源管理]
磷酸铁<font color='red'>锂电池</font>的放电特性及寿命
氢燃料电池与锂电池并非水火不容
  承载人类梦想的汽车工业   汽车一直是一个时代工业技术与科技技术的集合体,这模一式至今也没有变。在汽车产业链中所涉及的行业庞大而复杂,钢铁、机械装备制造,电子设备制造,乃至物流、金融行业。如今新的能源革命和互联网时代的到来让汽车行业迎来了新的变革,汽车行业正在以前所未有的速度发展,不同领域的公司对这一行业的热情空前高涨。汽车行业也再一次成为人类实现梦想的舞台,曾经在科幻电影中才能出现的画面渐渐的走入了普通家庭。   特别是新能源汽车的出现成为这个时代对未来汽车憧憬的符号,无论是传统汽车制造企业,还是怀揣“造车梦”的互联网企业都将新能源汽车作为自己的未来目标,但在经过几年的喧嚣之后人们对汽车产业的未来日渐明晰,
[新能源]
锂电池比有啥优势
目前,我国是全球最大的 电动汽车 市场,在 锂电池 产业占据领先地位。但随着科技发展以及国家政策的调整, 锂电 池出现了强劲的对手—— 氢燃料电池 。2018年国家提高了对纯电动乘用车的补贴门槛、补贴力度也有所下降,而国家对氢 燃料电池 汽车持鼓励态度,补贴平稳且到2020年不实行补贴退坡。与此同时,上海、广州、武汉、西安、杭州等十余座城市都已出台政策支持氢燃料电池汽车发展。 国家政策倾斜如此明显,我们不禁要思考:纯电动汽车能否持续占据主流地位?作为后起之秀的氢燃料电池又具备哪些竞争优势?未来,两者谁将是新能源汽车世界的“霸主”? 氢燃料电池与锂电池项目对比 从以上表格可以看出,若从两者的技术、成本角度评估,锂电池占据绝
[汽车电子]
和<font color='red'>锂电池</font>比有啥优势
三元锂电池被拒背后: 产能过剩与技术路线之争
    动力电池正在“疯狂”增长。     根据工信部发布的数据显示,到2015年,我国动力蓄电池产业规模已位居世界前三位。工信部装备 司司长张相木曾在1月24日的中国电动汽车百人会2016论坛上预判,2015年我国动力蓄电池单体产能有可能接近400亿瓦时,若以2020年生产 200万辆新能源汽车测算,未来几年我国动力蓄电池产品能够满足新能源汽车的生产配套要求。     这个数字也并不完全被业内认可。合肥国 轩高科动力能源股份有限公司董事、总经理方建华认为,由于一些商用车仅完成了25%的预期目标,2015年实现400亿瓦时的产能估算过于乐观。他给出的 预测是,动力电池的销售应该保持在160亿瓦时的水平,但是相对于201
[汽车电子]
石墨烯电池让电动车快充得以实现,充电十分钟行驶上千公里
电动交通工具因其清洁性而受到消费者青睐,而目前电池的电量和续航能力却又让人有些望而却步,不过这个令人头痛的问题,或将得到解决。    据《世界报》此前消息,西班牙Graphenano公司(一家以工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池,其储电量是目前市场最好产品的三倍,用此电池提供电力的电动车最多能行驶1000公里,而其充电时间不到8分钟。    Graphenano公司计划于2015年将此电池投入生产,并且计划与德国四大汽车公司中的两家(现在还不方便透露公司名称)将在本月和电动汽车进行试验。    而目前电动汽车界的明星汽车——特斯拉董事长兼产品架构师艾伦马斯克(ElonMu
[嵌入式]
可续航800公里 IBM发布会呼吸的锂电池
    环境问题和高油价在不断推动消费者考虑内燃机的替代品,各大汽车厂商和科技巨头们也把这件事情看做重点的研发对象,而其中最重要的一个难题就是车载电池续航里程短。目前电动车大多使用锂电池,一般情况下电池充满后,可行驶100英里左右(约160km)。其实早在2009年,IBM研发就已经启动了“电池500”项目。近日,IBM发布了会“呼吸”的锂电池。             该款锂电池在工作时通过吸入空气中的氧气,并将氧气与锂离子反应后产生电力,而在驻车充电时,电池会将氧气释放出来,如同“呼吸”一般。据消息称,这种会“呼吸”的锂电池一次充满电后,可供汽车行驶500英里(800km),续航能力较现在有大幅提升。    
[汽车电子]
意法半导体(ST)推出新的带EEPROM和嵌入式晶体的实时时钟芯片
新器件在电表应用中同时提供 三大 功能: 压缩电路板空间,提高产品可靠性,降低制造成本 中国 ,2006年11月29日 — 高性能模拟及混和信号产品的领导厂商 意法半导体(纽约证券交易所代码: STM) 推出一个高精度的串行实时时钟 (RTC) ,该芯片在一个节省空间的 18 引脚 SOIC ( 小外廓集成电路 ) 内集成了 EEPROM 和一个嵌入式晶体。ST的新产品 M41T56C64 压缩了电路板空间,提高了系统可靠性,降低了制造成本,特别适用于有计时精度和非易失性数据存储要求的应用产品。目标应用包括电表、医疗设备、自动售货机、销售点终端 (POS) 。
[新品]
科学家研发出新型锂电池 未来电动车十分钟充满电
英媒称,科学人员说,他们正在设法解决 锂离子电池 充电时间长的问题。新的电池技术可使 电动汽车 充电短短10分钟就能行驶200英里(1英里约合1.6千米)以上。 据英国《卫报》网站10月30日报道,美国宾夕法尼亚州立大学教授、研究报告的共同作者王朝阳说:“如果快速充电设施在路边随处可见,司机们就不必再担心续航里程,每充一次电行驶200至300英里以后,充电10分钟就能再行驶200至300英里。” 报道称,短短几分钟内快速充电需要强电流。然而,在低温条件下,哪怕是在30摄氏度,锂离子电池的这种充电方式也可能会带来问题,因为金属锂会在阳极周围沉积。温度升高到大约60摄氏度,可以让锂离子更快地移动从而避免这个问题,但让电池持续处
[汽车电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved