关于发电机主变压器保护存在的主要问题的分析

最新更新时间:2013-12-22来源: 电源网关键字:发电机  变压器 手机看文章 扫描二维码
随时随地手机看文章

本文详细论述发电机主变压器保护存在的问题,主要有三个方面:保护设计不完善、继电器原理有缺陷、设备老化。结合工程实践,提出一种有效的试验方案,能够对变压器二次电流回路正确性进行全面的检验。

1发电机主变压器保护配置情况

1.1发电机主变压器主保护

瓦斯保护、差动保护,瓦斯保护,属于机械保护,用于保护变压器内部故障,又分轻瓦斯和重瓦斯之分,轻瓦斯动作于信号,重瓦斯动作于掉闸,动作原理是变压器内部短路过热产生气体,气体由于密度较轻聚集于变压器上部,上部空气增多则对变压器油产生向下的压力使油的液面下降,油杯浮力减小随着油面下降致使接触节点轻瓦斯动作,重瓦斯与之原理相同,只是重瓦斯油杯处于轻瓦斯油杯下方,只有更大事故的才能启动。

差动保护:变压器差动保护是在变压器一次侧、二次侧各装一个CT,由于大部分变压器是星角接线,所以两个CT要求是角星接线,这样才能使输出的相位、电压等数据具有可比性(主要是由于变压器星角接线后一次侧、二次侧会产生30°的相角差)。外部故障时,变压器两侧同时变化则保护不会动作,内部故障时两侧产生变化则引起差动动作。

1.2后备保护

主要包括过电流、复合电压起动的过电流保护和负序电流保护。后备保护需要有一定时限,也就是说不能在主保护无故障时提前动作,要滞后于主保护的动作时间。

三种后备保护只是灵敏度不同,所以三种后备保护不一定要全部使用,其中过电流保护最简单,多用于保护普通的降压变压器,动作原理简单,就是当电流超过一定数值时引起保护动作,复合电压起动的过电流保护是用于保护升压变压器及当过流保护灵敏度不够时的降压变压器,引起保护动作的条件不仅仅是过电流还有低电压,当同时满足两个条件时保护才能动作,这样就可以减少误动的机会,负序电流保护用于保护大容量变压器或者联络电压器,是将负序电流整定出来,正常情况下负序电流为零,当发生非三相短路的任何故障时负序电流都有变化,则保护可以启动,因此加装一个单相低电压起动的过电流保护装置就可以实现保护的目的。1.3发电机组的保护配置

1)发电机组的差动保护分横差、纵差,横差就是匝间短路,纵差就是相间短路。现在大容量机组多是双星型接线,这样就会产生例如A1相与A2相匝间短路,此时就需要横差保护,因为这时纵差电流不会很大,动作灵敏度不高,单星形接线一样道理,另外匝间短路时会产生二次谐波,也可以利用二次谐波保护来反映匝间短路。

2)发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。定子接地按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。

3)励磁回路接地保护:励磁一点接地保护和励磁两点接地保护一点接地发信号,两点接地则跳闸。励磁一点接地保护主要采用叠加直流电压式,通过励磁绕组与地之间的电阻变化来反映是否接地。励磁两点接地保护是在发生一点接地之后投入的,因为两点接地保护需要利用一点接地才能动作,所以不需要时时投入,两点接地保护主要采用直流电桥原理,一点接地时形成电桥,两点接地时电桥平衡被破坏则保护动作。但存在死区,当接地点比较靠近时不平衡电流较小,继电器可能拒绝动作。

其他保护功能

1 主变低阻抗保护 17 过电压保护

2 复合电压过流保护 18 发电机定、反时限过励磁保护

3 零序过流保护 19 逆功率保护

4 间隙零序电压保护 20 程序跳闸逆功率

5 间隙零序电流保护 21 频率保护

6 主变定、反时限过励磁保护 22 起停机保护

7 发电机低阻抗保护 23 误上电保护

8 发电机复合电压过流保护 24 轴电流保护

9 发电机95%定子接地保护 25 高厂变两段复压过流保护

10 发电机100%定子接地保护 26 A分支两段过流保护

11 转子一点接地保护 27 A分支两段零序过流保护

12 转子两点接地保护 28 B分支两段过流保护

13 定、反时限定子过负荷保护 29 B分支两段零序过流保护

14 定、反时限转子表层负序过负荷保护 30 励磁变过流保护

15 失磁保护 31 定、反时限励磁过负荷保护

16 失步保护 32 TV、TA断线功能

2发电机主变压器保护存在的问题

发电机主变压器保护存在的问题主要有三个方面:保护设计不完善、继电器原理有缺陷、设备老化。2.1保护设计不完善

发电机组在设计中存在一定的问题。对于发电机保护,配置匝间保护方案时,为防止匝间保护专用TV高压侧断线导致保护误动,一套保护需引入两组TV。如考虑采用独立的TV绕组,机端配置的TV数量太多,一般不能满足要求。发电机机端建议配置三个TV绕组:TV1、TV2、TV3,A屏接入TV1、TV3电压,B屏接入TV2、TV3电压。正常运行时,A屏取TV1电压,TV3作备用,B屏取TV2电压,TV3作备用,任一组TV断线,软件自动切换至TV3。(TV3既匝间保护专用TV,只做复压过流的复压后备,不做接地保护的后备)

2.2设备老化

设备老化增加了维护成本,检修过程中多次发现由于元器件老化而更换继电器。设备老化增大了安全运行隐患。如发电机转子因使用年限较长,或运行中因各种原因使转子过热造成线圈绝缘材料老化、劣化。

2.3继电器存在原理缺陷

2.3.1零序电压型发电机定子接地保护存在的问题

图1是最基本的零序电压型发电机定子接地保护,实际运行中,经常发生保护误动或拒动现象。因此,有必要对这些问题进行分析与改进,从而提高保护的正确动作率。

2.3.2差动继电器存在的设计缺陷

现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。同时,由于电能的发、送、变、配、用电各个环节是同时进行,这样现代电力系统又是一个复杂的实时动态系统,这个系统除了包括发电、送电、变电、配电和用电设备外,还包括监测系统、继电保护系统、调度通信系统、远动和自动调控设备等组成的二次系统。在这个大系统中,其设备众多,分布区域很广,要保证每一台装置设备或每一条输电线路在任何时候都不发生任何故障是绝对不可能的。目前,发电机差动保护现状,发电机纵差保护可以很好地保护定子相间短路,大型发电机造价昂贵,内部故障造成的损失巨大,内部相间故障由于故障点电势可能较低,故障时受过渡电阻影响较大,如何采用新原理,不受过渡电阻影响,提高内部故障时保护灵敏度已成为重要课题。差动继电器存在的设计缺陷主要是二次谐波分相闭锁的问题。

3结束语

当前,电力已作为现代社会的主要能源,与国民经济建设和人民生活有着极为密切的关系,供电不稳定,继电保护装置的不完善,不仅不能保证设备安全运行和对设备造成的损坏,还会发生大面积停电事故所造成的经济损失和社会影响是十分严重的。因此,对现代电力系统的运行提出了更高的要求,为保证安全、可靠和经济地发供电能,就必须尽快改造现有发电机主变压器保护,使之适应电网要求。

关键字:发电机  变压器 编辑:探路者 引用地址:关于发电机主变压器保护存在的主要问题的分析

上一篇:新变压器冷化机熄停引发组件掉闸的问题和应对
下一篇:简述配电变压器三相平衡与无功自动补偿的特点

推荐阅读最新更新时间:2023-10-12 22:32

UPS输出变压器可以“抗干扰”说法是“无的放矢”
一、引言 根据历史的发展规律,当前正值高频机型UPS替代工频机型UPS的过渡时期,在这个时期,以前一直不被人们注意的输出变压器现在竟成了“抢手货”。主要原因是:据说这个变压器可以抗干扰。所以不但工频机型UPS的这个 变压器 稳固了抗干扰功能,就是已经取消了这个变压器的高频机型UPS也必须在输出端再给加上去。这样一来,在人们的印象中就好像高频机型UPS取消 变压器 的做法是瞎耽误工夫,反而成了技术落后的产品。可见宣传的“魅力”有多大!难怪一些用户对没有输出变压器的高频机型UPS抱有怀疑态度:变压器没了就不抗干扰了! 如果上述的宣传是真理,那么高频机型UPS就真地没有立锥之地了。可惜的是UPS输出变压器可以抗干扰”说法是“无的放矢”
[电源管理]
UPS输出<font color='red'>变压器</font>可以“抗干扰”说法是“无的放矢”
开关电源原理与设计(连载33)半桥式变压器开关电源
      1-8-2.半桥式变压器开关电源       半桥式变压器开关电源也属于双激式变压器开关电源,从原理上来说,半桥式变压器开关电源也属于推挽式变压器开关电源,它是多种推挽式变压器开关电源家庭成员之一。在半桥式变压器开关电源中,也是两个控制开关K1和K2轮流交替工作,开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。 由于半桥式变压器开关电源的两个开关器件工作电压只有输入电压的一半,因此,半桥式变压器开关电源比较适用于工作电压比较高的场合。       1-8-2-1.交流输出半桥式变压器开关电源       图1-36是交流输出半桥式变压器开关电源的工作原理
[电源管理]
开关电源原理与设计(连载33)半桥式<font color='red'>变压器</font>开关电源
压电振动式发电机微电源智能控制应用电路的设计
1 引 言 目前,随着MEMS技术的飞速发展和各国在微系统领域投资力度的加大,各种形式的微能源层出不穷。在不同的微器件和微系统中,如何充分合理地利用这些微能源为负载供应能量是亟待解决的问题之一,比如在工业自动控制,植入式医疗装置、无线网络传感器等领域,人为地定时换能加电,不仅浪费财力和物力,同时也造成病人的痛苦和设备的损耗。本文针对微能源输出功率极小但连续的特点,设计出一直新型的微功耗功智能电源管理控制电路,以把连续微量的电能加以储藏,在使用时再以较大功率间歇性输出以达到适用的目的。该文以压电振动式发电机为例,对系统电路设计进行说明。 2 压电振动式发电机的原理和输出特性 根据能量转换机理的不同,振动式发电机可以分成压电式、
[电源管理]
压电振动式<font color='red'>发电机</font>微电源智能控制应用电路的设计
平面变压器在开关电源中的技术优势
摘 要:高功率密度是当今开关电源发展的主要趋势,要做到这一点,必须提高磁元件的功率密度平面变压器因为特殊的平面结构和绕组的紧密耦合,使得高频寄生参数大大降低,极大地改进了开关电源的工作状态,因此近年来得到了广泛的使用研究了几种不同的平面结构和绕组制作的方式,介绍了设计平面变压器的一个标准方法,从而使得设计过程变得更加简单,大大降低了设计成本。最后,比较了平面变压器和传统变压器的一些参数,并给出了设计方针. 关键词:平面变压器;漏感;插入技术 0 引言 磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线
[应用]
一种基于配电网的跨变压器台区电力通信技术
摘要:跨变压器台区电力通信信号的频带位于200~600Hz之间,该信号可自动跨过配电变压器通过电力线实现数据交换。这种配电网通信方式采用过零调制发送及数字差分接收技术,具有信号调制功率小、抗干扰能力强、传输距离远的特点。介绍了跨变压器台区电力通信信号的定义、调制、解调方法及抗干扰措施。 关键词:过零调制 差分接收 相关技术 神经网络 跨变压器台区电力通信技术是一种以配电网为媒介的新型数据传输技术。该技术解决了如何利用现有配电网实现无中缝、无桥接设备的跨变压器台区在不同电压等级之间的数据交换问题。如图1所示,跨变压器台区电力通信系统由位于二次变电所的主站与位于用户电能表的采集模块组成,该系统完全以10kV/220V配电网为信息
[应用]
中大型项目光伏系统中的常用的几种变压器选型技巧
  变压器是一种能改变交流电压而保持交流电频率不变的电器设备。在电力系统的送变电过程中,变压器是一种重要的电器设备。     送电时,通常使用变压器把发电机的端电压升高,对于输送一定功率的电能,电压越高,电流就越小,输送导线上的电能损耗越小,由于电流小,则可以选用截面积小的输电导线,能节约大量的金属材料。用电时,再利用变压器将输电导线土的高电压降低,以保证人身安全和减少用电器绝缘材料的消耗。     我国的交流电压等级有三种,单相220V、三相380V称为低压,一般用于家庭和工商业。三相10kV,15kV,35kV称为中压,110kV、220kV、330kV、500kV,1000KV称为高压。     国家电网公司规定:8 kW及
[新能源]
全桥开关电源中变压器的仿真
全桥 是一种由四个 三极管 或着 MOS管 组成的振荡,与全桥电路相比,半桥在进行电路的振荡转换时会很容易产生干扰,容易使波形变坏。全桥虽然成本低,容易形成,但是相对的电路设计就较为复杂。在电子电力设计当中,全桥经常作为 开关电源 的搭配出现,这两种高效率低成本设计的结合,极大的推动了目前电源设计领域的进步。本篇文章将为大家介绍一种12V1000W的全桥开关电源中 变压器 仿真设计。 以12V1000W全桥为例,介绍一下主要设计参数: 输入电压为前级PFC输出的直流母线,最低波谷电压为350VDC; 输出电压12VDC,输出功率1000W; PWM频率 F=100KHz,即PWM周期10us; 最大占空4.5us,即最小死区500
[电源管理]
全桥开关电源中<font color='red'>变压器</font>的仿真
意法半导体推出符合 VDA 标准的LIN 交流发电机稳压器
意法半导体推出符合 VDA 标准的LIN 交流发电机稳压器,提高 12V 汽车电气系统的性能和灵活性 2022 年 9 月 15日,中国——意法半导体推出了 L9918 车规交流发电机稳压器,以更强的功能确保 12V 汽车电气系统稳定。 该稳压器内置一个MOSFET和一个续流二极管,MOSFET提供交流发电机励磁电流,当励磁关闭时,续流二极管负责提供转子电流。 发电机闭环运行具有负载响应控制 (LRC)和回路LRC控制,当车辆的整体电能需求不断变化时,使输出电压保持稳定不变。 励磁 MOSFET 可以向线圈输送最高13A 的电流,高于常规稳压器的电流处理能力,从而提高了系统对电能需求波动的响应速度。此外,因为采用
[汽车电子]
意法半导体推出符合 VDA 标准的LIN 交流<font color='red'>发电机</font>稳压器
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved