在很多大电流输出的场合,为了提高系统的可靠性,比较常用的一个方法就是采用热备份——多个电源模块并联使用。每个电源模块还具备在线插拔的功能。以便于拆卸和维修、维护。
但是我们知道,每个电源模块的内阻是略有不同的,而输出电压也不可能做到完全一致。故而,稳压输出的电压源是不可以直接并联的,或者是即便并联了,每个模块的输出功率各不相同。有可能会出现闲的闲死,忙的忙死的现象——有的模块在超负荷工作,损耗发热都比较厉害,寿命会降低。而有的工作于轻载,甚至都没有进入较好的工作状态(例如移相全桥,轻载时不容易实现软开关),也对电源健康不利。
这时候,我们需要一种手段,让各模块输出功率基本相同。这种把负载平均分配到各模块的手段,我们称之为均流。
均流的方法有很多种,例如:
1、输出阻抗法,又叫下垂法、倾斜法、电压调整率法。是通过调节电源的输出内阻的方式来实现的。这个方法的特点是简单。但最大的缺点是电压调整率差。
2、主从设置法,人为的在并联的模块中选一个主模块,别的模块的输出向这个模块靠拢。最大的问题是,如果主模块失效,那么整个电源系统都不能工作了。
3、平均电流自动均流法,把各模块的电流采样放大后通过一个电阻连到公用的均流母线上,大家按照均流母线上的平均电压来实现调整完成均流。平均电流自动均流法可以实现精确均流,但如果均流母线发生短路,或者某个模块发生故障,母线电压下降会使各模块电压下调。
4、最大电流自动均流法,又叫自动主从均流、民主均流,在所有并联模块中,输出电流最大的那个模块自动成为主模块,其他模块的输出向这个模块靠拢。
5,还有其他很多方法,例如热应力自动均流、外加均流控制器的均流等等。
目前应用比较广泛的是最大电流自动均流法,有专门为这设计的IC,例如UC3907等。但是在这里,我不打算用专用IC,仅采用普通的运放,来尝试实现此功能。采用ORCAD来仿真。
具体的工作原理其实很简单,就是把本模块的电流采样值和均流的值进行误差放大,然后用误差放大器的值去调节电压反馈环路的值,使输出电压发生变化,以调节本模块的输出电流,使电流反馈值与均流母线的值相同,从而实现了最大电流自动均流。
下面的图,就是单个模块内部的均流电路,U1A是电压误差放大器,U2A是电压采样的电压跟随器,U3A是电流采样放大器,把采集到的电流信号,反向放大100倍为正电压信号,U4A为均流误差放大器,U5A为电压跟随器,将本模块输出电流的采样信号输出到均流母线上,但此电压跟随器稍微有点变化,就是如果均流母线上的电压比本模块的电流采样信号的电压高的话,那么本模块的信号就不会输出到母线上。所以,母线上的电压信号,永远是输出电流最大的那个模块的。此外,还有一个模型E,这是一个把输出电压放大的模块,此处用来作为电源变换器来使用,将电压误差放大器的输出信号放大作为输出,增益设置为10。负载,我用了一个9A的电流源来模拟恒流负载。
好,我们把图中中间带着运放的这部分电路,再复制两份,贴在同一电路图中。然后,在其中一个模块的输出上反串联一个电压源,用将这个电压源慢慢升高的方法来模拟此电源模块出故障了的过程,来尝试观察其他的模块是否可以继续保持均流。
电路复制后,要选择菜单里的windows->xxx.opj,进入OPJ管理窗口,然后选择标签Hierarchy,点击schematic1,再选菜单TOOLS->annotate,弹出Annotate对话框,在action项选择Unconditional reference update,点击OK。
再从菜单windows回到电路图窗口,进行直流扫描仿真,设定我们反串的电压源从0V扫描到5V,步长0.01V。
仿真结果
可以看到,在反串的电压源电压从0变化到3V的过程中,由于电路的调节功能,模块的输出还是能保持均流的。随后由于模拟反串电压源的电压升高,超出了电路的调节能力,模块的输出电流开始下降,而另外两个模块的输出开始上升,对于那两个正常模块来说,电流还是均衡的。等到故障模块彻底不输出电流了,负载电流完全由两个正常模块平均提供。
改变图1中的R20的阻值,可以改变均流误差放大器对输出电压调节的能力。如果我们将每个模块的这个电阻改为3K,重新做一次仿真,再看电流波形,就可以看出来,在反串电压源从0到5V变化的整个范围,所有模块依然可以均流输出。
上一篇:工程师:教你220v交流电转5v直流电的电源设计
下一篇:有过电压过电流保护及隔离作用的交流电源设计
推荐阅读最新更新时间:2023-10-12 22:32
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 【技术大咖测试笔记系列】之四:万用表测量电源瞬态恢复
- STM32G0系列通过HAL库读取CPUID
- 支持“中国芯”,极狐GitLab助力AI芯片企业DevOps体系建设
- Traxcell公司起诉苹果 称苹果地图侵犯了一项导航专利
- 国外大神改造Game Boy掌机,使其能够链接上Wi-Fi上网
- 小米研发团队详解MIX FOLD液态相机:装配连接复杂,良率90%
- 大联大世平集团基于onsemi产品的高频小型化工业电源方案
- 挑选示波器时要注意的几个重要参数
- 恩智浦推出新一代安全高能效i.MX 91系列,为广泛的边缘应用扩展Linux功能
- 意法半导体八路输出高边开关,在紧凑的封装内整合丰富的保护诊断功能