新手初次设计反激电源式电源?手把手教你步骤

最新更新时间:2014-01-18来源: 21IC关键字:反激电源式  电源 手机看文章 扫描二维码
随时随地手机看文章

准备

在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。

所需设备

在本课程中,您将用到以下设备:

1.一个隔离式交流电源供应器或一个自耦变压器

2.一个瓦特表

3.至少四个数字万用表,其中两个具有高精度电流量程

4.一个带有高压探针的示波器

5.一个电流探针

6.还有您的实际负载

术语

本文将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。

处于稳压状态的输出

自动重启动

在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。

在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。

设计信息

现在就可以开始测试了。下面,我们将以使用TinySwitch -PK器件的RD-1151参考设计电路板为例进行讲解。该电源用于DVD播放器,可提供7.5 W的连续输出功率,峰值功率为13 W.连续输出功率分为四路输出,它们包括:

3.3 V,500 mA

5 V,500 mA

正12 V,250 mA

负12 V,30 mA

目测

设计之前,应先目测检查电路板,确保所有极性组件都已正确插装。虽然这种情况并不常见,但一个元件插装错误却能导致破坏性故障。

即使在完成了元件插装检查后,我们仍强烈建议您在第一次设计电源时佩戴护目装置。确保所有极性组件都已正确插装。

禁用欠压锁存

第一步是检查电源能否在低输入电压下正确工作,因此您需要禁用Power Integrations器件的欠压锁存功能(如果已启用的话)。在大部分设计中,这意味着将UV电阻从电路板上卸除。在本设计范例中,UV电阻连接在DC总线和TOPSwitch -HX器件的M引脚之间。您需卸除这些电阻,使M引脚与源极短路。如果是其他产品,请参阅相应的器件数据手册,确定应使用的正确元件和禁用UV功能的方法。

极低电压工作

接下来,将两个短导线焊接到输入电容的负极和正极端子上,用作测试点。为了正确验证低电压工作情况,您需要在施加低AC输入电压的过程中,监测输入电容的输出电压和DC总线电压。将一个万用表连接到电路板的输出端子,并将另一个万用表连接到输入电容,利用两个测试点进行监测。这两个万用表都应设置为读取DC电压。

如果您的设计有多路输出,可将负载电阻连接到主稳压输出以外的任何输出。负载电阻的大小应能够吸收为每个输出指定的最小负载。这样可防止这些输出电压因峰值充电而超出规格范围。

如果没有为输出指定最小负载,那么选择电阻吸收5 mA的输出电流。将AC输入导线连接到电路板。确保AC输入正确连接到电源的输入端子,而不是连接到DC输出。AC输入连接错误可严重损坏电源。

在本测试中,您还需要测量AC输入功率。如果您有瓦特表,请参照其操作手册中有关如何安装到AC输入通道的说明,配置为测量AC电压、电流及输入功率。如果没有瓦特表可用,可将第三个万用表与AC输入串联,设置为测量AC电流。再将第四个万用表连接到电源输入端子,测量AC电压。

现在,确保自耦变压器或交流电源供应器设置为零,然后将其开启。将输入电压慢慢提高到约10 VAC.您应该可以在瓦特表或输入万用表上看到AC输入电压在逐步增大。如果没看到的话,应确认您的交流电源供应器是否配置正确。您还应该看到DC总线电压在您施加AC电压的过程中不断增大。

如果您使用的是瓦特表,稳态AC输入功率应小于15 mW.如果您使用的是两个万用表,稳态AC电流读数应小于10 mA.如果您看到输入功率或AC电流高于此值,那么说明您的电路板存在故障。关闭交流电源供应器,断开AC输入连接。

在上述情况下,持续提高AC电压会对电路板造成破坏性故障。有关确定和修复电路板故障的信息,请参见PI大学课程“修复无输出电压的反激式电源”。

启动和稳压

如果输入功率小于15 mW,则可继续将电压增大到50 VAC.观测DC输出电压,如果输出处于稳压状态、自动重启动状态,或者输出电压表上的电压读数大于0.1 V,则说明的电路板未受损且功能正常。

继续将AC输入电压增大至指定的最小输入电压。如果电源无法启动或达到稳压,请停止测试,并参照PI大学课程“修复输出无法达到稳压的反激式电源”排查问题。

现在,关闭AC输入,将输入导线从电路板断开,将输入电容放电至安全的电压水平。此外,将万用表从DC大容量电容断开。

MOSFET漏极开关波形

接下来,您需要监测漏极开关波形。断开电路板上的漏极走线,插入一个电流环。确保此断开点介于Power Integrations器件漏极引脚与箝位电路中的任何元件之间。这样可以确保探针只检测到MOSFET电流。

将一个1000 V或更大倍数的x100探针连接到MOSFET两端来测量开关电压。将示波器配置为以适当的比例同时显示电压和电流波形,并设置一个宽时基,以便在一帧图像上显示许多开关周期。例如,对于这个132 kHz设计,可将时基设置为每格50μs.

负载主输出

现在,将一个电子负载连接到电源的主输出,确保负载设置为零。将两个万用表连接到该输出,一个连接到输出端子来测量输出电压,另一个与电子负载串联来测量输出电流。用精度最高的万用表来测量输出电流。

重新将AC输入导线连接到电路板,确保自耦变压器或交流电源供应器设置为零。现在,接通AC输入,慢慢将电压增大至电源的最小指定输入电压。慢慢将电源的负载增大至满功率的25%.输出电压应维持在指定稳压容差范围内。继续将负载提升到满载。输出电压应保持稳定,并处于稳压限值范围内。

满载工作

如果您的设计采用多路输出,请关断AC输入,拆下早前安装的最小负载电阻。将所有这些电阻都分别替换为电子负载,直到您电源的所有输出都加有负载。如果此时没有电子负载可用,请参照电力电子装置导论课程了解更多负载选项,以及如何替代它们的信息。

按照前面所讲的方法,连接两个万用表来监测每个输出的输出电压和电流。本设计总共有4路输出,因此总共需要8个万用表,其中至少4个应具有高精度电流量程。这种配置便于进行快速测量。如果没有足够的这种万用表可用,可以用一个万用表来测量所有电压,方法是将它轮流连接到所有输出,分别测量电压,一次测量一个输出。

将所有负载设置为从每个输出吸收少量的电流,避免峰值充电的发生。再次将AC输入归零,然后接通,慢慢将输入增大至电源的最小工作电压。从主输出开始逐个慢慢增大每个输出的负载,以达到该输出的额定满载点,直到电源的所有负载都提供指定的满输出功率为止。

此时,您的电源提供最大连续输出功率。所有输出都应保持稳压,并且处于指定的容差限值范围内。否则,请停止测试,参照PI大学故障诊断课程中的内容来排查问题。如果电源已进入自动重启动模式,请参见PI大学课程“修复无法提供满功率的反激式电源”。

检验效率

当电源在最大连续负载和低压状态下运行时,对电源执行快速效率测量,并将测量结果与PI Expert指定的目标值进行比较。如果发现测量的效率低于预期的5%以上,请参照PI大学故障诊断课程中的内容排查问题。

峰值漏极电压(高压)

接下来,减小示波器的时基,并在漏极电压的上升沿触发。将示波器设置为正常触发模式,然后缓慢增加触发电平,直至示波器在MOSFET电压出现最高峰值时偶尔触发。

利用示波器的光标测量MOSFET在此峰值时的最大电压。现在,缓慢将AC输入电压增加到最大输入电压,增加50 V后暂停,以增加触发电平,然后测量最高峰值。

一旦所测得的峰值漏极电压超过650 VDC,则应停止增加输入电压,以防止该电压超过MOSFET的最大额定电压。如果在被迫停止前尚未达到最大输入电压,则说明您的箝位电路可能设计有误,或者变压器漏感超过了预期值。请先解决这一问题,然后再继续下一操作。

欠压锁存

接下来,将各输出负载降至最低,然后切断AC输入。如果您的设计中包含UV检测电路,则请重新连接该电路。此外,应将一个万用表连接到输入大容量电容两端,设置为测量DC电压。将AC输入归零并接通,然后缓慢增加电压,直至DC总线电压达到UV阈值的下限。

电源的启动电压应介于根据Power Integrations器件及您的UV电阻的容差所定义的两个限值之间。而且,电源在电压达到您设计的最小AC输入电压之前应能启动。

在我们的设计范例中,电源应在DC总线上的78 V到105 VDC电压范围内启动,这由电阻和器件UV电流阈值的容差所定义。峰值漏极电压(过载)

电源启动后,将AC电压增加到最小输入电压,然后使电源上的负载达到满载。在主输出上,开始缓慢增加负载,同时监测示波器上的峰值漏极电压。在开始使电源输出过载时,确认该峰值电压始终不会超过650 V峰值。如果超过峰值,请停止测试,排查箝位电路上的问题。

一旦达到最大过载功率,输出将会失调。这将触发Power Integrations器件并进入自动重启动,或者进行锁存关断。

自动重启动是对电压失调最常见的一种响应方式,但具体响应情况因器件系列和电路配置而异。

记录电源在刚进入保护模式之前示波器上所显示的峰值漏极电压值。如果该电压大于650 VDC,您需要调整箝位电路。

电源过载会给所有元件带来压力,且会增加电源的损耗。这将导致元件温度迅速升高,因此如果出现过热的情况,应立即停止测试,让电源慢慢冷却下来。

峰值漏极电压(启动)

进行下一个测试时,需要将电源负载减小至满载。如果电源已进入锁存关断模式,可能需要在电源返回正常操作模式之前切断并重新接通AC输入。切断交流电源供应器,然后等待DC总线上的电压已降至约10 V.如果设计中采用了大容量电容,可能需要花费几分钟的时间。使用电容放电板可以缩短这一时间。

接下来,您将检验启动时的漏极电压和电流波形。将输入电压增至最大值,确保电源处于满载状态。将示波器设置为在漏极电压波形的上升沿正常触发。缓慢增加触发电平,直至找到可在正常工作模式下进行触发的最高电平。然后切断交流输入,重新装上电源。

在增加触发电平的过程中继续这一操作,直至在装上电源的过程中抓取到最高峰值电压。如果测得的最高电压超过650 V峰值,则需要重新设计箝位。

漏极电流波形(启动)

触发示波器上的漏极电流波形时重复上述操作程序,测量在装上电源时看到的最高电流。检验电流波形的形状,看是否存在变压器饱和的迹象。

启动过程中,可能会看到两个电流波形中的一个。左侧波形是正常电流脉冲,它在导通到关断的过程中呈线性斜升。右侧电流脉冲表示存在变压器饱和的迹象。请注意该脉冲是如何以类似指数的形式上升到更高端的。这是变压器磁芯达到饱和且不能再贮存能量的临界点。此时,初级电流将快速增大,可能会损坏Power Integrations器件或其他初级侧元件。

变压器饱和的主要原因是有过多的磁通在磁芯中累积。如果在您的设计中发现饱和现象,首先需要与变压器供应商核实,看变压器是否严格按照PI Expert设计所指定的参数值进行制造。此外,还应确保变压器的初级电感值处于设计所容许的容差限值范围内。(请参见第16章,了解不使用LCR测量仪进行此测量的具体方法。)如果器件限流点设定过高,也会造成变压器饱和。请查阅所用器件的数据手册,了解检验限流点设定方式的信息。

如果变压器结构和限流点设定方式正确,您需要重新设计变压器,以减小磁芯的磁通密度。您可以通过为变压器添加额外线圈或减小初级电感LP所容许的生产容差来实现这一点。在PI Expert设计中增加线圈数时,可增加次级绕组圈数NS,软件将会按比例相应增加初级绕组圈数NP.您也可以通过调节KP值来减小磁通密度。如果初级限流点可设定且远高于您的功率级要求,那么降低限流点也会造成磁通量增大。在特殊情况下,您也能需要通过增大磁芯尺寸来减小磁通密度。您需要不断调整设计,直至最大磁通密度(BM)和峰值磁通密度(BP)都远低于PI Expert所指定的限值。请注意,优化后的PI Expert设计应始终能把磁通密度限制到可接受的水平。在手动调整设计时,如果所作的某个修改可使磁通密度骤然增大,PI Expert将会向您发出警告消息,提醒这一危险状况。

变压器磁芯过热时,也会造成变压器饱和。发现饱和问题后,应检验变压器是否在适当的温度限值内进行工作。必要时,请重新设计变压器,以降低磁芯和绕组损耗,并降低其工作温度。

在启动测试期间,可能会抓取到短脉冲,如上图所示。这些脉冲都是正常的,是由低输出电压下变压器复位不足造成的。

变压器初级电感量

现在切断AC输入,将高压示波器探针连接到输入大容量电容的端子。然后,向电源施加最小的AC输入电压,将输出负载增至满载。设定示波器,将高压探头连接在输入大容量电解电容两端,从而测量到DC总线电压,同时测量漏极开关电流波形。

利用示波器测量大部分线性斜升过程中的漏极电流的di/dt比值。这部分通常处于流限的25%到75%之间。此外,还应在用来测量电流变化的时间间隔内,同时测量平均DC总线电压。利用这两个测量结果,您可以根据电感的基本关系式计算出变压器初级电感量的近似值:V = LΔi/Δt

MOSFET导通后,变压器初级侧的电压将近似等于平均DC总线电压。电感中的电流等于漏感电流。调整该公式后,我们可以计算出L值:L = VΔt/Δi

将计算得出的值与PI Expert中的指定值进行比较。如果计算值超出给定的容差范围,则需联系变压器制造商以解决这一问题。

初始电流尖峰

接下来,检查在MOSFET导通后随即出现的高初始电流。切断交流电源供应器,将高压示波器探针重新连接到MOSFET两端,测量漏极开关电压。然后,施加指定的最大AC输入电压,并将电源负载增至满载。设定示波器,以便同时显示MOSFET电压和电流,并在漏极电压的上升沿触发。调宽时基范围,以便监测一个完整的开关周期。

前沿消隐功能,在MOSFET导通后立即将流限传感器禁止一段时间。这样可防止初始电流尖峰触发流限,使其提前结束电流脉冲。不过,如果导通尖峰大于正常值,还是会触发器件的初始流限,并使传输到输出的功率受到限制。

PI前沿消隐功能

在指定的最低输入电压下重复此测量。如果电源设计为在低压下以连续导通模式工作,则初始电流基值将会增大初始电流尖峰。

偏置绕组电压

如果您在设计中采用了偏置绕组,则需关断AC输入并连接一个示波器电压探针,然后进行设置,测量偏置绕组输出滤波电容上的DC电压。必要时,可将两个短接导线焊接到电路板背面,用作测试点。然后,施加最小的AC输入电压,并移除电源输出上的所有负载。

通过示波器测量并记录偏置绕组电容在整个周期内的最低电压。如果测量的最低偏置绕组电压低于8 V,则可导致您的电源出现稳压问题。要解决此问题,您需要增加偏置绕组的圈数以增大电压。我们建议您在重新检测原型设计的电压之前,每次只添加一个线圈。添加过多线圈将导致偏置绕组电压大幅升高,从而加大设计的空载功耗。建议空载时的最低偏置绕组电压应大于8 V,但小于约9 V.在有些设计中,增大偏置绕组滤波电容的值可提供足够的维持时间,使最低偏置绕组电压升至8 V以上。

输出二极管反向峰值电压(PIV)

接下来,检测输出二极管的PIV.首先,关断AC输入,并断开电路板上的所有示波器探针。然后,在待测量的输出二极管上连接一个低压探针,如下图所示,将接地线夹和探针尖分别连接到阴极和阳极。另外,我们还插入了一个电流探针,与输出二极管串联,用于查看二极管电流。不过,您在测量时并不一定要这样做。

施加最大的AC输入电压,并将电源负载增至满载。观察示波器上显示的DC电压时,您将发现:在二极管导通时二极管上的电压接近零值,二极管关断时电压迅速回复为负值。该负电压即为逆向电压。在任何测量点测量二极管出现的最高负电压,然后将该测量值与二极管的PIV额定值进行比较。如果测量值等于或大于二极管额定值,那么该二极管将在尚未达到预期的元件寿命之前就会失效。

为提高元件的现场可靠性,Power Integrations建议在PIV测量值与二极管额定值之间维持20%的裕量。如果您的二极管不符合这些要求,请换用PIV额定值更大的二极管,或者对二极管缓冲电路进行优化。

满载效率

接下来,测量并记录电源在最低和最高AC输入电压下的满载效率。如果满载效率比PI Expert预测值低出5%或更多,则需要解决此问题。

元件温度

测量设计中关键元件的温度,其中包括二极管、电解电容、共模扼流圈、变压器磁芯、绕组以及Power Integrations器件。执行这些测量应满足以下条件:电源满载,且电源已在室温下工作大约20分钟。分别测量最小和最大AC输入电压下的温度。不过,温度通常在低压时最高。

不断增大所测室温的温度到指定的最高环境温度,以接近最差条件的环境温度。将这些估计温度与元件数据手册中的最大工作温度进行比较。在进行比较时,确保将您设计中的任何降额要求纳入考量。

您可以降低元件额定温度,以满足特定安全要求或延长元件使用寿命。例如,电解电容的允许工作温度与元件的预期使用寿命成函数关系。一个额定温度105℃、额定使用寿命2,000小时的电容,在70℃下连续工作时,其预期使用寿命可达到约20,000小时。为便于参考,这里提供了部分主要元件的温度降额值。

如果发现某个元件或PCB变色,或是某个元件冒烟,请立即关断AC输入并解决这一问题。

输出电压纹波

现在,测量输出电压纹波,确定它处在设计指定的限值范围内。如果超出指定范围,或发现输出有明显的振荡,请参照PI University的故障诊断课程解决这一问题。

以最终负载启动

最后,关断AC输入,将电子负载从电源输出移除,然后连接实际负载。将一个万用表连接到电源的输出端,监测输出电压。将交流电源供应器设定为电源的最大AC电压,并装上电源。检验电源能否在为实际负载供电的情况下启动并达到稳压。

将AC电压设定为最小限值,重复此测试。如果电源在连接实际负载的情况下无法启动,您需要观看PI大学故障诊断课程“修复输出无法达到稳压的反激式电源”排查问题。

为最终负载供电

如果您的负载具有不同的工作模式,请务必循环测试所有模式,确保电源永远不会进入自动重启动模式。如果进入的话,说明您的负载所吸收的功率大于电源的额定输出功率。此时,您需要认真分析负载特性,然后重新设计电源。

关键字:反激电源式  电源 编辑:探路者 引用地址:新手初次设计反激电源式电源?手把手教你步骤

上一篇:盘点在开关电源设计中的经典问答题
下一篇:一种通用数据采集系统的设计方案

推荐阅读最新更新时间:2023-10-12 22:34

防爆电机拆卸顺序_防爆电机拆卸注意事项
  防爆电机拆卸顺序   1、首先切断防爆电机电源,拆开防爆电机与电源的连接线,然后后对电源做好绝缘处理,以免发生触电。   2、松开皮带轮和电机联轴器,这时候可以将地脚螺栓和接地线螺栓全部松掉。   3、卸下联轴器及皮带轮,然后再讲风扇罩和风扇去掉,如果风扇罩和扇叶有积灰需及时清理。   4、如果防爆电机属于绕线式电机,那么可以先提起和拆除电刷架及电刷以及引出线等关键部件。   5、端盖和外盖的拆装顺序:拆卸掉前轴承的外盖,前端盖,后轴承外盖,后端盖。   6、抽出转子主部件,转子内部保持清洁,不要发生任何磕碰。   7、检测防爆电机轴承是否完好。然后再拆卸前轴承-前轴承内盖-后轴承-后轴承内盖。      防爆电机拆卸注意
[嵌入式]
防爆电机拆卸顺序_防爆电机拆卸注意事项
基于CS1500设计的90W高效PFC电源技术
本文介绍了CS1500主要特性,方框图,基本应用电路和材料清单,以及90W高效 PFC LLC谐振转换器参考设计电路图和材料清单(BOM). CS1500是Cirrus 公司的适用于通用输入的高性能功率修正因素(PFC)控制器,采用有所有权的数字算法的不连续导通模式(DCM),具有可变的接通时间和可变频率控制,从而保证PFC为一. CS1500的保护特性包括过压,过流,超功率,开路和短路以及超温保护,主要用在电源和照明镇流器设计. 图1.CS1500方框图 图2.CS1500基本应用电路图 应用电路中元件数值表: 90W高效PFC LLC谐振转换器参考设计 CS1500 90W, High-efficiency PFC w/
[电源管理]
基于CS1500设计的90W高效PFC<font color='red'>电源</font>技术
适合初学者制作的TOP系列电源
TOP22X系列虽然出来得比较早,但外围简单、高效,适合初学者制作。图下面的是量产的真实数据。变压器都是PC40材质。同样适合100KHZ的其它 芯片 驱动的单端 反激 式 开关电源 ! 1.  12V/1A,12W电源。IC用TOP223Y,100KHz。     磁芯:EE19,气息:0.15mm,  初级电感:950uH,     初级:直径0.21单线饶110T,次级:0.41*2绕11T,反馈:8T 2. 12V/1.5A,18W电源。IC用TOP223Y,100KHz。     磁芯:EE22,气息:0.2mm,  初级电感:900uH,     初级:直径0.26单线饶85T,次级:0
[电源管理]
适合初学者制作的TOP系列<font color='red'>电源</font>
分布电源并网技术的发展
以上介绍的DER并网技术是“有限接入”,即对于接入容量等做出严格限制。为了充分利用可再生能源,必须实现DER并网的“宽限接入”和大量接入,这也是智能电网概念提出的根本原因之一,智能电网技术的发展,将使这问题能得到较好地解决。随着DER的大量接入,配电网就由传统的无源网络将发展成为有源网络,当前,涉及这方面的技术研究主要有微电网技术与虚拟发电厂技术。 1.有源网络的基本概念 有源网络(ActiveNetwork)指的是分布式电源高度渗透、功率双向流动的配电网络。所谓“高度渗透”是指接入的DER对配电网的潮流、短路电流产生了实质性的影响,使得传统配电网的规划设计、保护控制、运行管理方法不再有效。有源网络的概念是针对并网技术对D
[电源管理]
分布<font color='red'>式</font><font color='red'>电源</font>并网技术的发展
如何解决开关电源的电磁干扰问题?
  近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的 EMI 问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。   1开关电源的干扰源分析   开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大
[电源管理]
详解车载电源系统开关电源的设计
目前世界各国正在研究42VDC汽车用电源系统,欧共体计划从2008年开始采用42VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现42VDC/12VDC的转换会产生很大的功率损耗,缺点明显。 本文提出了一种具有过载和短路保护的车载电源系统的 开关电源 设计方案。该方案采用单端反激式结构实现42VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。   UC3842的保护电路设计 1 UC3842的典型应用 UC3842是高性能的单端输出式电流控制型脉宽调制(PWM)芯片,其典型应用电路如图1所示。  图1 UC3842典型应用电路   2 过载保护原理
[嵌入式]
基于TOPSwitch及PI Expert的单端反激开关电源设计
  开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。   传统的单端反激电源一般由PWM控制芯片(如UC3842)和功率开关管(频率较高时一般使用MOSFET)组成,PWM芯片控制环路设计复杂,容易造成系统工作不稳定,功率开关管有时需要外加驱动电路。另外,反激变压器的设计也是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwit
[电源管理]
基于TOPSwitch及PI Expert的单端<font color='red'>反激</font><font color='red'>式</font>开关<font color='red'>电源</font>设计
低噪声+高功率密度 电源行业先进器件和应用
电源管理可以有效地将电源分配给系统中的不同组件,通过控制和监测电源系统中电压或电流的输入和输出,保证电源系统的安全稳定与高效运行。因此,电源产品性能的优劣会直接影响整个系统的运行效率和使用周期,在电子设备中至关重要。常见的电源管理芯片有线性稳压器(LDO)、电荷泵(charge pump)、DC-DC转换器、AC-DC转换器等,应用领域涵盖消费电子,工业、汽车以及电信设备等几乎所有数字化场景。近年来随着汽车和消费电子等行业的需求迅速增长,电源管理也成为了电子行业增长最快的领域之一。 ADI电源新技术 P90技术简介 P90是ADI公司的大批量先进电源平台技术,也是目前其电源产品大量应用的工艺。P90工艺最大的优
[电源管理]
低噪声+高功率密度 <font color='red'>电源</font>行业先进器件和应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved