关于电子信息技术中信号源的设计与制作

最新更新时间:2014-04-17来源: 21IC关键字:电子信息技术  信号源 手机看文章 扫描二维码
随时随地手机看文章

作为产生各种电子信号的仪器,信号源又可以叫做信号发生器,因为所有的电子信息设备都是在信号源的作用下进行信号的输出工作,所以信号源被广泛的应用到科技和生产实践等众多领域中。信号源通过变换电路以及波形产生电路来提供各种信号,其中波形产生电路又可以叫做波形发生器或振荡器,工作原理是通过电路将直流能源转变为交流能源输送出去,不需要增加其它外界的激励信号。可以将信号源划分为:数字信号、脉冲信号、扫频信号、正弦信号、函数信号等具有不同波形的信号源,电子线路中普遍用到的信号源是脉冲信号和正弦信号。在电子信息技术快速发展的时代,对信号源等基本电子设备的开发和研制也相继步入了一个全新的发展阶段。

1.直接数字式频率合成技术的特点

直接数字式频率合成技术(Direct DigitalSynthesizer)简称DDS,在功率的消耗、转换时间、成本投入以及分辨率等方面都要优于传统的频率合成器。人们生活的各个领域也都涉及到了电子信息技术,电子测量仪器和电子信息系统的发展空间非常广阔,而在对电子信息设备进行数字化改革的过程中最关键的步骤是DDS技术的应用。正弦计算器、高速相位累加器和频率控制寄存器是DDS技术的主要3个部件,工作的主要过程:经过并行或者串行的方法,频率控制寄存器将用户输入的频率控制码进行装载和寄存,DDS频率控制码在高速相位累加器的作用下在一定时间段内相位累加,累加形成相位值经过正弦计算器的正弦波幅度的数字化计算,计算过程中通过查询表可以找到芯片。应用低通滤波器以及高速D/A转换器的作用之后的数字化正弦波,才能保证DDS芯片输出的是可用的模拟频率信号。

可编程逻辑器件AD9850、小键盘、8279芯片、数码管、单片机AT89C51、放大电路模块和低通滤波器是基于DDS技术信号源的几个重要的组成部件。作为信号源的核心成分,可编程逻辑器件AD9850以及单片机AT89C51的功能主要是将输出波形的信号频率显示出来。信号源设计原理详见图1所示。

 

 

信号源在电子系统中发挥着很大的作用,信号源的种类非常多,并且具有多种特征和功能,用户要根据相应的目的来选择适当的信号源种类。DDS技术是信号源的设计和制作过程中最核心的内容,其中方波、锯齿波、正弦波和FM调制信号输出(频偏范围为0~100KHZ)是设计DDS信号源时的侧重点,信号输出过程中的阻抗是50~70Ω,TTL电平是经FM调制信号以及正弦波输出的幅值,FM调制信号输出的频偏要保持在0~100KHZ的范围内。

2.信号源硬件电路的设计与制作

键盘扫描及显示电路和可编程逻辑器件AD9850波形产生电路是DDS信号源的主要硬件电路。在对信号源硬件电路的设计与制作的过程中要从键盘扫描及显示电路和可编程逻辑器件AD9850波形产生电路两个方面进行分析。

2.1 键盘扫描及显示电路

利用单片机AT89C51的PO串口对4×4的小键盘(本论文主要的研究对象)进行扫描,为了方便可编程逻辑器件AD9850引入外部时钟信号,在扫描过程中要将外接无源晶体振荡器接入到单片机的XTAL1和XTAL2引脚之间,并通过74LS164对数码管进行驱动,其中无源晶体振荡器的频率要达到12MHz.最后用十进制的方式把扫描的结果显示出来。此外,将两个电容器以并联的方式加入到无源晶体振荡器的两端能在长时间内有效的保持振荡器频率的稳定性。

2.2 可编程逻辑器件AD9850波形产生电路

在可编程逻辑器件AD9850的作用下DDS信号源自动产生的正弦信号的信号频率跟控制信号相同,而且此可编程逻辑器件本身含有比较器,所以还能在输出过程中把正弦信号转变为相同频率的方波信号。单片机AT89C51上的两根口线控制的数字电位器能够调节信号的幅值和波形。用户可以通过单片机AT89C51的逻辑控制作用来按需求获得不同的波形,并把形成的频率字通讯连接到上位机。

在设计过程中还应注意以下事项:①在共用一组电池的情况下,各级放大的输出信号在多级放大电路的过程中,因为内阻的作用会产生一定的公共输出,各放大级间就会彼此影响,从而导致系统的稳定性被破坏,甚至出现自激的情况。面对以上情况,可以通过设计去耦电路的方法来去掉不需要频率的交流信号,并在元器件附近设置去藕电容不仅能提高接地性还能提升去耦电路的使用功效,此外,在设计去耦电路的过程中还应注意要分离数字地和模拟地。②因为只有高质量的适中信号才能被可编程逻辑器件AD9850所接受,所以要保证时钟信号的上升沿和下降沿不存在明显的凹凸边缘,提高时钟信号的质量,同时对时钟信号用地线屏蔽,才能符合可编程逻辑器件AD9850对时钟信号的需要。③可编程逻辑器件AD9850的时钟信号的频率只有在大于1MHz的情况下,系统才会正常工作,一旦信号频率低于1MHz时,芯片就会处于休眠的状态,不能正常运转,而当时钟信号的频率大于1MHz时,系统会自动的从休眠状态调整到工作状态。

3.信号源软件的设计与制作

在信号源软件的设计与制作的过程中,首先要将在小键盘中得到的相位控制字的BCD编码以及输人频率控制字进行二进制转换,并参照相位公式及频率算出相位跟频率对应的控制字,然后在程序控制作用下注意扫描小键盘,通过按键的方式输入数值,最后在数码管上完成显示的过程。信息源程序流程详见图2所示。

 

 

参照可编程逻辑器件AD9850控制字的工作原理,在对DDS信号源的软件进行编程的过程中将各种不同作用的控制字编写到8279芯片中,通过编译软件的检查程序功能来检测程序中是否存在语法问题,之后利用编译软件单步试运行程序,可以通过各个窗口显示观察结果,程序调试中所有程序如果都呈现正常的工作状态即完成调试,再在单片机AT89C51中用TOP51编程器记下调试好的程序,重新启动系统并对程序参数进行改正,最终保证系统的正常运转。

关键字:电子信息技术  信号源 编辑:探路者 引用地址:关于电子信息技术中信号源的设计与制作

上一篇:基于DDS技术的实用信号源的设计(一)
下一篇:基于51单片机的温度采集系统简单应用设计

推荐阅读最新更新时间:2023-10-12 22:38

RF信号源低相位噪声及高速频率切换的共存设计
接收机质量和测试仪速度的提高对信号发生器性能提出了更为严苛的要求。随着频谱日益拥挤,通信行业必须开发新的调制技术,提高组件测试速度和性能及生产能力。因此,现在比以往更加需要经济高效的高质量信号源解决方案。 和汽车到手机的演变类似,信号发生器的性能不断提高而价格却日益走低,客户和消费者不断要求获得更多的功能和性能且希望价格更低。 RFIC 设计和手机生产测试要求信号源降低相噪,加快频率切换速度,这种要求通常来说是矛盾的。因此一般而言,性能优化往往只能针对其中一种要求或另一种要求,很少能够同时满足两种要求。Aeroflex S-Series信号发生器采用了具有特点的频率合成器设计[图1]同时优化两方面的性能,在频率切换时间小于
[测试测量]
基于FPGA的DDS+DPLL跳频信号源设计
军事通信中,常采用跳频技术来实现通信信息的保密和抗干扰,尤其是应用在通信系统中抗跟踪式干扰方面,它是电子对抗中非常重要的一个研究课题。   最初的频率综合器全由模拟电路实现,由于模拟电路存在温度漂移、电网电压等缺点,给系统的同步带来困难。随着大规模、超大规模数字集成电路的发展,在部分应用领域,数字频率综合器逐渐取代了模拟频率综合器。近年来随着FPGA和CPLD技术的迅猛发展,数字频率综合器的实现方式和工作速度都到了本质的改进和提高,可以说数字频率综合器是随着FPGA的发展而发展起来的。   1 各个功能模块的组成原理与实现   1.1 数字鉴相器   在数字鉴相器(异或门鉴相器)中,首先将输入信号
[嵌入式]
基于FPGA的DDS+DPLL跳频<font color='red'>信号源</font>设计
基于直接数字频率合成的可编程遥测信号源
0 引言 遥测信号源的主要功能是模拟弹载遥测信息。从技术实现上,可将信号源分为模拟信号源、数字信号源和DDS信号源。其中DDS信号源是现代信号源的发展方向。DDS技术(直接数字频率合成)是近年来迅速发展起来的一种新的频率合成法,具有可编程、易于实现各种数字化调制(如PSK,FSK等高精度的数字调制),频率分辨率高、转换速度快、稳定度高,相位噪声低以及集成度高等优点。近年来,随着遥测技术的发展,遥测产品逐渐呈现出小型化、标准化、系列化等应用需求。因此,为满足应用需求,遥测信号源必须能够提供多样的被测信号类型,根据被测模块参数的变化进行实时调整,实现一一对应。而传统的遥测信号源在设计上缺乏灵活性、通用性,被测参数的多样性和实时性差,
[测试测量]
基于直接数字频率合成的可编程遥测<font color='red'>信号源</font>
AD7008构成的可程控信号源设计
    摘要: AD7008是ADI公司生产的高集成度的DDS频率合成器,利用AD7008和AD7520可构成极易控制的程控信号源。文中详细介绍了AD7008的原理结构以及由其构成的程控信号源的硬件电路及软件编程。     关键词: 程控信号源  直接数字合成(DDS)  AD7008  AD7520     在一些电子装备的电路板故障检测仪中,往往需要频率、幅度都能由计算机自动调节的信号源。采用诸如MAX038信号发生器芯片外加电阻及切换开关等器件虽然也能调节频率和幅度,但这种调节是离散的,且电路复杂,使用不方便。而采用直接数字合成芯片AD7008及外加D/A转换芯片AD7520构成的可控信号源,
[应用]
基于ISA总线的多路同步DDS信号源设计
  直接数字频率合成(Direct Digital Frequency Synthesis)技术是近年来随着数字集成电路和微电子技术的发展而迅速发展起来的一种新的频率合成技术。直接数字式频率合成器以其极高的频率分辨率、极短的频率转换时间、相位精确可调、设备结构简单、易集成、体积小及成本低等优点,在高分辨雷达系统、宽带扩频通信系统以及现代测控系统中得到广泛的应用。为了便于信息的采集、处理和操作控制,常常要求信号源基于PC机平台设计。PC机内部有两种常用的总线,即PCI总线和ISA总线。ISA总线接口关系简单.操作控制方便,既避免了PCI总线繁琐的时序关系和各种苛刻的规范,又具有适中的传输速率,能够满足系统要求,是比较理想的DDS与计算
[嵌入式]
STM32 ADC应用中信号源特性对转换结果的影响
STM32家族中的所有芯片都内置了逐次逼近寄存器型ADC模块.内部大致框架如下: 每次ADC转换先进行采样保持,然后分多步执行比较输出,步数等于ADC的位数,每个ADC时钟产生一个数据位。说到这里,用过STM32 ADC的人是不是想到了参考手册中关于12位ADC转换时间的公式: ST官方就如何保障或改善ADC精度写了一篇应用笔记AN2834。该应用笔记旨在帮助用户了解ADC误差的产生以及如何提高ADC的精度。主要介绍了与ADC设计的相关内容,比如外部硬件设计参数,不同类型的ADC误差来源分析等,并提出了一些如何减小误差的设计上建议。 这里我摘取部分内容,结合个人的理解加以整理与大家分享。更多细节可以去www.s
[单片机]
STM32 ADC应用中<font color='red'>信号源</font>特性对转换结果的影响
可程控延迟脉冲信号源的设计
随着各种高新前沿技术的迅猛发展,传统设计的固定延迟时间的快前沿脉冲源,已不能满足需要,常常需要在一定范围内可对延迟时间进行任意设置。 一般讲来常规的设计有两种方法。一是将多个具有不同延迟时间的固定延迟脉冲产生 电路 单元,组合成一个可程控的 电路 ,通过计算机的 控制 来获得不同延迟时间的快沿脉冲输出,但很难达到高准确度的延迟时间和较好的快沿特性以及较高的脉冲形状的一致性。主要原因是在多个固定延迟单元电路的接入点处,不管是 电子 式还是 机械 式 开关 ,其接触 电阻 都是一个随机参数,并且该参数还受到电路周围环境的影响,从而使输出的脉冲前沿和延迟时间产生较大的随机误差,并且很难消除。而且采用这种方法所设计的电路复杂、体积也
[模拟电子]
智能化频率特性测试仪系统组成及应用
传统扫频仪的信号源大多采用LC电路构成的振荡器,大量使用分立元器件来实现各功能,显示部分采用传统的扫描显示器。因此传统结构的扫频仪不仅结构复杂、体积庞大、价格昂贵、操作复杂,而且由于各元件分散性大,参数变化容易受外部环境变化影响,精度不高。目前,以Agilent等为代表的仪器生产厂家提供了多种高性能的频率特性测试仪。但其产品主要集中在射频、微波等高频领域,中低频段的产品相对缺乏。本文基于直接数字频率合成(DDS)的技术思想,采用DSP和FPGA架构的现代数字信号处理技术,设计了一台低成本,高度数字化和智能化的频率特性测试仪,实现了对20 Hz~150 MHz范围内任意频段的被测网络幅频特性和相频特性测量和显示,完成了数据存储回放和
[测试测量]
智能化频率特性测试仪系统组成及应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved