基于ISA总线的多路同步DDS信号源设计

发布者:明月昊天最新更新时间:2016-05-09 来源: eefocus关键字:ISA总线  多路同步  DDS信号源 手机看文章 扫描二维码
随时随地手机看文章
  直接数字频率合成(Direct Digital Frequency Synthesis)技术是近年来随着数字集成电路和微电子技术的发展而迅速发展起来的一种新的频率合成技术。直接数字式频率合成器以其极高的频率分辨率、极短的频率转换时间、相位精确可调、设备结构简单、易集成、体积小及成本低等优点,在高分辨雷达系统、宽带扩频通信系统以及现代测控系统中得到广泛的应用。为了便于信息的采集、处理和操作控制,常常要求信号源基于PC机平台设计。PC机内部有两种常用的总线,即PCI总线和ISA总线。ISA总线接口关系简单.操作控制方便,既避免了PCI总线繁琐的时序关系和各种苛刻的规范,又具有适中的传输速率,能够满足系统要求,是比较理想的DDS与计算机的接口总线。随着电子系统复杂性的不断增加,单路DDS已经不能够满足系统需求,多路DDS系统的设计开始成为研究的热点。

  1 系统工作原理

  图1是某自动测试系统的工作原理框图。图中的高稳定度频率基准为整个系统提供频率为50MHz的参考时钟。系统的控制命令由计算机发出,经过ISA总线传输,送到FPGA进行缓存、译码,同步控制三路DDS产生需要的信号。其中,DDS1的输出信号为初始相位可变,脉冲宽度、脉冲周期、脉冲个数等由计算机编程设定的射频脉冲序列。脉冲的载波频率在fT=2lMHz附近可调。该射频脉冲经过功率放大、低通滤波后,在高频开关的控制下发射出去。接收到的反射回波由高频开关选通,与DDS2产生的20MHz第一本振fLO1混频,得到频率为1MHz的中频脉冲调制正弦信号。该中频信号再分成两路,分别与DDS3输出的频率为1MHz二本振fLO2的1支路和Q支路两路脉冲调制正交信号进行相位检波,得到的信号经低通滤波、模数转换,送到计算机进行数据处理。为保证收发信号有效可靠地隔离,在发射波门和接收波门之间插入等待时间。各路信号之间的关系如图2所示。为简便起见,图中只画出了DDS3输出的I、Q两路信号中的一路,这不影响对信号控制时序的理解。

  

 

  

 

  为了便于信号处理,该系统对各路DDS输出信号的时间关系提出了严格的要求:(1)相位检波器的两路正交参考信号相位应严格控制在90°相差上,以保证正交检波器的性能。(2)其初始相位可以通过计算机控制调整。(3)DDS2的输出信号和DDS3的I支路输出信号必须同步,以保证在DDS3同相支路上的信号相位与中频信号的相位保持同步;同时Q路信号必须保持相位的正交。(4)每个射频脉冲周期,各路DDS输出信号的初始相位严格同步,保证回波信号的相参积累。

 

  2 多路同步设计

 

  图3是该自动测试系统的数据采集、多路DDS同步单元的实现框图。经过相位检波、低通滤波的I、0两路信号输入到该单元电路中,经OP-07放大、AD976采集后,再经FPGA由ISA总线送入到计算机中。OP-07具有低偏移、高开环增益的特点,适合于高增益的测试系统应用。AD976是采样速率为200ksps的高速16位低功耗模数转换器。FPGA芯片采用Ahera公司的ACEX系列芯片EPlK50,实现ISA总线与三路DDS及数据采集的接口。其灵活的可重新配置特性为实现接口电路提供了极大的方便,片上集成有4OKbit的RAM,便于缓存计算机的控制信息。DDS芯片选择美国模拟器件公司的AD9854。它的相位累加器为48位,利用片上PLL可实现4~20倍的可编程倍频,内部最高时钟可达300blHz,尤为突出的优势在于具有100MHz的高速并行配置接口,内置最大相位误差小于1°的I、Q两路的DAC输出,便于产生lMHz的正交信号。对于该自动测试系统,各路DDS之间的同步关系是电路设计的核心问题。AD9854芯片本身没有同步信号,要实现各路的精确同步,必须对电路进行优化设计。为分析方便,分别从参考时钟、刷新时钟和内部锁相倍频三部分进行讨论。

  

 

  2.1 参考时钟

  成功的同步设计要求各路DDS的参考时钟之间的相位差最小。参考时钟边沿的时间差会使各路DDS输出信号产生相应比例的相位差。参考时钟的边沿抖动要足够小,上升/下降时间要短,以免增加时钟信号的相位误差。数据采集与多路DDS单元电路首先把外部送来的50MHz高精度、高稳定度的正弦信号转换成方渡,送给各路DDS作参考时钟。时钟转换功能利用1:4的PECL时钟分配器SYl00EL15实现。ECL电路是现有各种实用数字逻辑集成电路中速度最快的一种,也是目前惟一能够提供亚毫微秒开关时间的实用数字逻辑电路。SYl00EL15最高可以工作在1.25GHz频率上,器件间的最大偏斜为200ps,单个器件的最大偏斜为50ps,时钟均方抖动仅为2.6ps,上升时间介于325ps和575ps之间。AD9854的参考时钟能够兼容PECL逻辑。射频信号在长线传输过程中,为了抑制由此产生的反射和串扰,SY100EL15的输出与AD9854参考时钟之问的PECL逻辑电路必须良好地匹配。图4的匹配方式是一种比较好的方案。图中:

  

 

  对于3.3V供电的LVPECL电路,R1取126Ω,R2取82.5Ω。AD9854的时钟输入电路有单端方式和差分方式两种,采用差分方式有利于抑制电路产生共模噪声。时钟分配网络布线时,要保证每一路差分时钟信号的走线等长,并且各路DDS时钟信号之间的走线也应当等长。电路板应该按照微带线设计。不同的微带线结构将导致信号传输常数有所差异。

  

 

  

 

  2.2 刷新时钟

  AD9854芯片引脚中与配置内核密切相关的信号除了数据线、地址线、写信号以外,还有刷新时钟。写信号的作用是将I/O口上的数据传送到AD9854芯片内部的缓冲区中,而刷新时钟则用于配置AD9854内核的相应寄存器。刷新时钟引脚既可以作为输入信号,工作于外部刷新模式;又可以作为输出信号,工作于内部刷新模式。鉴于多路同步原因,通常工作于外部刷新模式。刷新信号的时序如图5所示。从AD9854内部看,刷新时钟UPDATE实际上是电平有效信号。在该信号出现于AD9854引脚后的第一个系统时钟上升沿,即A时刻,系统时钟识别到刷新时钟。在第三个系统时钟的上升沿,产生AD9854芯片DDS内核的内部刷新时钟。该信号与系统刷新时钟同步,作为将I/O口上的数据配置到AD9854内部配置寄存器的时钟信号。在第四个系统时钟的上升沿,完成对内部寄存器的配置。在第五个时钟的上升沿,产生内部刷新时钟信号的下降沿,配置过程结束。以图5为例,为使该过程工作可靠,应当保证三路DDS芯片的刷新时钟必须超前于相同的系统时钟,即时钟0,否则会导致各路DDS的输出相差一个AD9854的系统时钟。

  2.3 锁相倍频

  根据数模转换的数学模型,DDS输出信号的频率通常不得超过系统时钟频率的40%。以50MHz作为参考时钟产生频率为20MHz的信号会给滤波带来困难。AD9854内部集成了锁相倍频电路,可以将50MHz的参考时钟倍频至200MHz。片上锁相倍频电路带来的问题是环路建立时间会随着AD9854及片外环路滤波器的器件不同而产生差异。这将导致在锁相环路的建立过程中,送给AD9854相位累加器的系统时钟周期数目无法准确预测。因此在环路建立过程中,相位控制字的值必须为零以避免相位累加器的值不断累加。DDS芯片内部集成锁相环路的建立时间典型值约为400μs。为了保证各路DDS的同步,在起始10ms让AD9854输出的频率控制字和相位控制字始终为零。10ms以后,才启动AD9854的输出相位累加过程。待PLL建立起来以后,再改变各路DDS芯片相应的控制字。

  计算机的主控软件用VB语言编写,系统FPGA软件用VHDL语言编写。FPGA内部设计了一个基于FIFO技术的缓冲区,将主控计算机发送过来的各类控制命令暂存。为了简化控制时序,采用的方法是利用ISA总线的数据线依次传输各路AD9854的配置数据和寄存器地址,并且暂时存放在缓冲区中;而后利用ISA总线的写信号作为各路AD9854的刷新时钟信号,完成对DDS芯片的同步配置。

  3 测试结果

 

  ISA总线信号源采用四层印刷电路板设计。布线时,采取电源退耦滤波、合理分割内电层、隔离数字地和模拟地等措施,有效地克服了计算机内部复杂的电磁干扰环境,得到了较好的测试结果。用Agilent公司频谱仪8563EC测试了DDS输出的频谱。用Tektronix公司的示波器TDS3032B测试了三路DDS输出的时间关系。结果表明,信号在20MHz处的相位噪声优于一100dBc@lkHz,在O~0.5fs范围内的杂散抑制优于-55dBc。以DDS的尉新信号作为同步参考信号,三路DDS(包括DDS3的I/Q两路),从刷新时钟上升沿到DDS有信号输出,时间间隔均为305ns,能够实现精确的同步。

  为了保证频率合成器的性能指标,抑制电磁干扰,DDS通常都是单独安装在密闭的屏蔽盒中。从目前的应用情况看,越来越多的基于计算机的电子系统要求利用DDS技术实现各种精确、使用灵活的信号源。这使得DDS很难实现单独屏蔽。计算机系统内部的电磁泄漏非常严重。信号走向、各种时钟和时钟发生器、CPU等都会对处于计算机内部的DDS产生干扰。本文对基于计算机的DDS技术做了尝试。在没有增加屏蔽结构的条件下。频率合成器的相位噪声和杂散指标都满足系统要求,针对AD9854,通过精心设计,实现了多路DDS的同步和IQ正交输出。

 
关键字:ISA总线  多路同步  DDS信号源 引用地址:基于ISA总线的多路同步DDS信号源设计

上一篇:基于USB接口的嵌入式无线传输系统设计
下一篇:基于PC/104总线的旋转变压器电路设计

推荐阅读最新更新时间:2024-05-03 00:22

基于ISA总线与KH-9300的数据采集系统软件设计
1 引言 该数据采集系统采用硬中断方式,通过对KH-9300板卡上的8254定时器和8259中断控制器编程定时触发中断并对外部脉冲计数,设计中每隔1 s采集1次数据,数据采集卡第0和1号通道采用串行方式并使用板卡上的内部时钟进行计时,第2、3、4、5号通道输人外部计数脉冲计数。所有通道采用内部门控信号。当串行的第0~1通道计数满时,就向板卡上的8259中断控制器的IN1引脚发出中断指令。通过8259中断控制器向计算机内的8259A的中断引脚(这里设计为第5号中断引脚)发出中断指令。CPU响应中断请求,执行中断程序,对板卡上第2、3、4、5号通道进行数据采集,并把采集后的数据写入文件。 2 板卡及8254定时、计数常数的设置
[测试测量]
基于<font color='red'>ISA</font><font color='red'>总线</font>与KH-9300的数据采集系统软件设计
精简ISA总线扩展应用
    英创公司的嵌入式主板系列产品为了支持客户的各种应用扩展,所有的ARM9系列和X86系列的嵌入式主板均带有精简ISA扩展总线。ISA总线是PC机最经典的扩展总线(在嵌入式领域,通常以PC104总线的形式出现),在工业控制领域有着广泛的应用,以及深厚的应用基础。所谓精简ISA总线就是在保持通用ISA总线时序不变的前提下,仅保留常用的总线信号,以最大限度的减少总线总的信号数量,以适应模块的小型化。英创公司的精简ISA总线包括8位数据总线、5位地址总线(可扩展到13位)、片选控制线、读写控制线以及中断请求线。英创公司所提供的评估开发底板将这些信号线制定了一个接口标准,采用双排20芯 IDC插针,用户可利用精简ISA总线进行系统功能的
[嵌入式]
基于DSP和DDS的商品防窃监视器扫频信号源
摘要:提出一种基于数字信号处理器(DSP)和直接数字信号合成器(DDS)技术的高精度扫频信号源的实现方法,着重讨论AD9834型DDS的基本工作原理、扫频波信号源的硬件结构和软件流程。 关键词:商品防窃监视器(EAS);TMS320VC5410;AD9834;扫频信号源 1 引言 商品防窃监视器(Electronic Article Surveillance)简称EAS,是目前超市普遍使用的安检防窃设备。其原理是由发射电路产生7.8MHz"8.8MHz的扫频信号,该信号由近场天线发射,当天线附近有标签存在时(标签为高Q值的LC振荡回路,谐振中心频率为7.8MHz),标签发出谐振电磁波信号,该信号被EAS接收天线接收,经解调、放
[嵌入式]
基于ISA总线的ADC板卡设计
1 引言    模数转换器是工业测量和控制系统中数据采集子系统的重要部件,它是测控现场的模拟信号源与数字计算机之间的接口,其任务是把现场中连续变化的被测信号转换成离散信号,再由工控计算机作进一步的数据处理。这就要求系统将所采集的模拟数据信号尽可能真实地、不失真地显示给控制人员,为此,笔者研制了基于ISA总线的A/D转换板卡。该板卡以AD574为A/D转换核心,在ISA总线技术的基础上,利用较少的外围元件来实现多通道、高精度的A/D转换。该板卡具有32路单端信号输入,电压范围为0V~12V,转换位数为12bit/8bit任选,同时具有自检功能。本文主要介绍该板卡的硬件组成原理和软件实现方法。 2硬件电路    本转换卡的
[嵌入式]
基于DDS和FPGA技术的高动态扩频信号源的研究
    摘要: 提出一种基于DDS和FPGA技术的高动态扩频仿真信号源的实现方案。采用了DDS技术的芯片AD9854和AD9850,能够模拟多普勒频移,实现高动态环境仿真。载波中心频率变化范围达到100kHz,变化率1.8kHz/s。     关键词: 扩频 DDS FPGA 多普勒 扩展频谱通信(Spread Spectrum Communication)作为一种新型的通信体系,具有抗干扰能力强、截获率低、码分多址、信号隐蔽、保密、易于测距等优点,是通信领域的一个重要发展方向。正是由于这些优点,扩展通信在军事上受到了极大的重视。为配合高动态扩频接收机的研究,迫切需要一台能够精确模拟高机动目标环境条件下
[网络通信]
基于AVR单片机的DDS信号源电路图
电路原理如下图所示,可分为四个部分:以IC1为核心的DDS;以IC2为核心的键盘、显示及控制电路;以IC3为核心的AGC电路;以IC4为核心的检波电路。 图 基于AVR单片机的DDS信号源电路图
[单片机]
基于AVR单片机的<font color='red'>DDS</font><font color='red'>信号源</font>电路图
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved