一、现代通信开关电源为实现无人值守,均具备远程监控功能,例如遥信、遥测、遥控,而与之相联的信号线接口通信距离长,极容易遭受感应雷损坏而造成停机等事故,根据信产部要求应加装相应的信号防雷器予以保护。
二、加装直流防雷器是最近发布的防雷标准中才提出的,因为直流防雷器的残压大大低于交流防雷器,因此能有效地提高通信开关电源通信站内敏感设备抵御雷电电磁脉冲的能力。
三、防雷器的防雷能力与安装方式有密切关系,主要是引线电感会产生额外的残压,应尽可能地缩短电力线与防雷器的连线和防雷器与接地汇接板连线的长度。
四、多级布置防雷器可减小引线电感带来的额外残压,因为前级防雷器已将大部分雷电流泄放入地,在后级的防雷器只泄放少部分雷电流,雷电流的减小必然导致引线上的附加残压减小。为保证防雷器前后级的能量配合,防雷器之间的电力电缆长度应不小于15米,否则应采用退耦器进行能量配合。
五、进局电力电缆的防雷容易引起重视,而其它进出通信站的电力线常常被忽视,如照明路灯线、塔灯电力线、非电信设施租用电信电力线等。现在宜采用太阳能塔灯,可减少一个雷击入侵渠道。其它出局电力线应在防雷系统的保护范围内,否则应采取专门的防雷措施。
关键字:开关电源 防雷
编辑:探路者 引用地址:开关电源防雷要点汇总
推荐阅读最新更新时间:2023-10-12 22:44
功率MOSFET应用于开关电源注意的问题
功率MOSFET应用于开关电源时应注意以下几个问题。
(1)栅极电路的阻抗非常高,易翼静电损坏。
(2)直流输入阻抗高,但输入容量大,高频时输入阻抗低,因此,需要降低驱动电路阻抗。
(3)并联工作时容易产生高频振荡。
(4)导通时电流冲击大,易产生过电流。
(5)很多情况下,不能原封不动地用于双极型晶体管的自激振荡电路。
(6)寄生二极管的反向恢复时间长,很多情况下与场效应晶体管开关速度不平衡。
(7)开关速度快而产生噪声,容易使驱动电路误动作,特别是开关方式为桥接电路、栅极电路的电源为浮置时,易发生这种故障。
(8)漏极-栅极间电容极大,漏极电压
[电源管理]
LED照明开关电源设计原理及全过程
一、概论
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间
电源有如人体的心脏,是所有电设备的动力。但电源却不像心脏那样形式单一。因为,标志电源特性的参数有功率、电源、频率、噪声及带载时参数的变化等等;在同一参数要求下
[电源管理]
开关电源原理与设计(连载62)
当铁芯或铁芯片表面磁场强度的最大值Hm高于磁场强度的平均值Ha时,其差值为:
该数值和磁场强度增量∆H之比等于:μaδ2/12ρcτ ,它表征涡流的影响,并与平均导磁率μa及铁芯片厚度δ的平方成正比,与铁芯片材料的电阻率ρc及脉冲宽度τ成反比。
根据(2-62)式可知,铁芯或铁芯片表面的磁场由两个部分组成:
(1)平均磁场,它随时间线性增长,由线圈中固定的电动势感应所产生;
(2)常数部分,它不随时间变化,由补偿涡流的产生的去磁场所形成。
对应铁芯片表面的两部分磁场,我们可以把它们分别看成是由 和 两部分电流产生的。根据安培环路定律:
[电源管理]
数字开关电源控制系统测试过程
功能演示版本已经完成。0~36V连续可调步进0.1V 误差 -0.03V 0~12A恒流可调 步进0.1A 误差 -0.1A (演示版本是10位精度的)。 现在10位、12位精度的控制系统已经完成!可以用来改装现有大、小功率模拟开关电源,可轻松实现灵活的数字通信、人机界面和可编程控制。 图是刚完成的12位精度控制系统 电脑控制端界面 开启输出控 电压、电流设置端界面 关闭控制后的界面 恒流和恒压模式下的实际测量 最近做的纹波测试恒压模式下33.1V空载条件下的纹波测量结果20mv档 50mv档 恒压模式下33.1V输出11A电流条件下纹波测量结果 带载测试的图片 设定输出电压35.9V LED显示
[测试测量]
八个基本要点帮你顺利搞定开关电源PCB排版
开关电源 产生的电磁干扰,时常会影响到电子产品的正常工作,正确的开关电源PCB排版就变得非常重要。许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB布线存在着许多问题。 现在电子产品更新换代速度极快,简直就是迅雷不及掩耳之势,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于 开关电源 产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。根据经验总结了八点开关电源PCB排版的基本要点。 下面就为大家简单总结一下这八个要点分别都是什么。 要点1、旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,
[电源管理]
恒流限压大功率蓄电池充电器方案
本机可以对48伏以下的蓄电池进行快速全自动充电,充电功率最大可以达到600瓦。STK702-015是一片功能强大的大规模厚膜开关电源电路,内含辅助电源、PWM控制、输出驱动电路、功率场效应管输出电路等。它和简单而且专用的外围电路一起组成性能可靠的开关稳压电路。交流电源通过电源滤波器后分成两路:一路经整流滤波后供给PWM脉宽控制驱动模块STK702-015的31、32脚,内部PWM开始工作,产生70KHZ的开关信号并驱动功率场效应管作强劲的D类放大后由25、26脚输出,经过特殊的LC电路推动高频变压器工作,经次级降压后由快恢复二极管MOR3040PT半波整流后输出,这里没有滤波电容,这和普通的开关电源有些区别,理论和实践告诉我们:脉
[电源管理]
谐振电路升压转换器可降低超便携式应用开关损耗
最近,为了降低无源元件的尺寸并获得快速动态响应,驱动频率已被提高至MHz的数量级。但驱动频率越高,开关损耗就越大。随着开关频率不断增加,MOSFET的开关损耗将超过导通损耗。特别是由于功率器件是在最高电压电流条件下关断的,因此,升压转换器的关断开关损耗要大于导通开关损耗。本文将介绍一种简单的能够降低或消除升压转换器开关损耗的LC谐振网络,并详细分析其工作模式。
引言 在便携式产品的各种DC/DC转换器中,效率已逐渐成为有关延长电池寿命的热门话题。在升压转换器或步进转换器中,主要的开关损耗是在功率开关关断时产生的,因为此时仍处于最大的电压电流转换条件。在非连续性电流模式(DCM)中,升压转换器的主要功率器件通过从
[电源管理]
基于TOPSwitch-GX系列的多输出开关电源
1 引言
多路输出开关电源广泛应用在各种复杂小功率电子系统中,就多路输出而言,通常只有输出电压低、输出电流变化范围大的一路作为主电路进行反馈调节控制,以保证在输入电压及负载变化时保持输出电压稳定,由于受变压器各个绕组间的漏感和绕组电阻等的影响,辅助输出电压随输出负载的变化而变化,通常,当主输出满载和辅助输出轻载时,辅助输出电压将升高,而当主输出轻载和辅助输出满时,辅助输出电压将降低,这就是多路输出的负载交叉调整率问题,笔者基于 TOPSwitch-GX系列设计了一种多路输出开关电源,很好的解决了多路输出的负载交叉调整率问题,该电源在各种工况下都能稳定输出,主输出电压纹波小于3%,各路辅助输出纹波小于5%,负载交叉调整率
[电源管理]