同步整流面面观:如何用对正激变换器?

最新更新时间:2014-08-29来源: 互联网关键字:同步整流  正激变换器 手机看文章 扫描二维码
随时随地手机看文章

1 引言

在电源技术飞速发展的今天,同步整流技术正在低电压、大电流输出的dc/dc变换器中广泛应用。在这样的情况下,某些损耗问题也暴露了出来。例如,对采用1.5V、20A电源的笔记本电脑而言,恢复整流二极管的损耗已经超过电源输出功率的50%,即使采用低压降的二极管,损耗也达输出功率的18%~40%。因此,传统的二极管整流电路已成为提高低电压、大电流dc/dc变换器效率的瓶颈。

由于mosfet不能像二极管那样自动截止反方向电流,因此同步整流器的驱动是同步整流技术使用的一个关键。驱动方式的选取不仅关系到变换器能否正常工作,更决定了变换器性能。按照驱动方法的不同,同步整流分为自驱型和外驱型,两者的主要区别在于,自驱型同步整流管的驱动电压一般采用的是变压器上或辅助绕组上的电压,而外驱型同步 整流管的驱动电压是由外部同步整流驱动芯片产生的。本文将分别讨论两种同步整流驱动的方法,并阐述了同步整流中需要注意的问题。

由于正激变换器是最简单的隔离降压式dc/dc变换器,其输出端的lc滤波器非常适合输出大电流,可有效抑制输出电压纹波。所以,正激变换器成为低电压大电流功 率变换器的首选拓扑结构。正激变换器必须采用磁复位电路,以确保变压器励磁磁通在每个开关周期开始时已经复位,常见的磁复位方法有:有源钳位、rcd钳 位、绕组复位、谐振复位等,如图1所示。



rcd钳位的方法虽然电路简单,但是它大部分磁化能量消耗在钳位电阻中,不利于效率的提高;有源钳位虽然可以重复利用变压器磁化能量和漏感能量,但是有源钳位系统的控制带宽受到限制,动态性能不好,并且它多用了一个钳位开关,增加了驱动电路的难度和变换器的成本;而谐振复位由于谐振电压比较高,因此对开 关管的电压应力要求就更高;对于绕组复位的方法,结构较简单,磁复位时将能量回馈到输入源中,并且对开关管的电压应力要求并不高。2 自驱同步整流

2.1 栅极电荷保持驱动方法的基本原理

对于本文选用的 绕组复位正激变换器,其传统传统自驱型同步整流的方法如图2所示,在磁复位结束后,变压器的电压将为零,并且会保持在零直到下一周期开始,这样续流管将没有电压提供驱动,电流会从其体二极管中流过,而其体二极管正向导通电压高,反向恢复特性差,导通损耗非常大,这是传统自驱同步整流的主要缺点,因此提出了 采用栅极电荷保持的同步整流方法,它的原理如图3所示。



在t0时刻之前,输入信号v1为0,开关s1关断,电容c的初始电压为0。在t0时刻,输入信号v1为正,通过二极管d对电容c充电;在t1时 刻,输入信号v1为0,二极管d承受反压截止,只要开关s1保持关断,电容c上的电荷得以保持,v2维持高电平;在t2时刻,开关s1导通,电容c通过 s1放电,v2变为0。如果c是同步整流管的栅极寄生电容,s1是一个辅助开关,那么在t1到t2这段时间内,输入驱动信号v1降为0时,同步整流管的栅 极电压仍可保持高电平。2.2 栅极电荷保持驱动正激变换器

利用栅极电荷保持的驱动方法,传统电压驱动同步整流器在变压器电压死区时间内,续流管体二极管的导通问题很容易解决,图4给出了栅极电荷保持电压驱动正激变换器的原理图和主要波形。



在t0到t1的时间内,开关管s1开通,变压器副边电压变为上正下负并驱动s2和s4使它们导通。s3的栅极电容通过s4放电,s3的栅极电压降为0,s3关断,输出电流流进s2。

在t1时刻主开关管s1关断,变压器进行磁复位,变压器副边电压变为下正上负,s2和s4关断,s3的栅极电容由流经d1的电流充电。s3栅极为高电平 导通,负载电流流经s3。在t2时刻磁复位结束,变压器副边电压变为0,由于二极管d1承受反压截止,s4关断,s3的栅极驱动电压保持不变,因此,即使 变压器副边电压为0,s3仍然保持导通,继续续流。s3的栅极电压一直保持到下一个开关周期开始,也是s4导通之时,这就解决了死区时间内s3体二极管续 流导通的问题。对于这种栅极电荷保持的自驱型同步整流方法,有一个重要的过程就是,在续流管s3续流结束时要将其栅极电荷放掉,否则当变压器副边电压变为上正下负的时候,续流管会导通,有电流从漏极流向源极,并最终导致变压器副边,续流管和整流管形成一个回路,即副边出现直通。而放掉续流管s3的栅极电荷必须 依赖于副边电压变为上正下负,即使s4导通,将s3栅极电容上的电荷通过s4放掉,但是这里出现的情况是,当变压器副边电压为上正下负使s4导通的时候, 同时续流管s3的ds电压也建立起来,如果s3的栅极电荷未放完,至少剩余的电荷仍能驱动s3时,这时s3就会正向导通,电流就会由漏极通过s3流向源 极,并经过整流管s2回到变压器副边,这样变压器副边电压就被短路,s4就无法再导通,s3上的栅极电荷就一直存在,直到这些电荷因为驱动s3而消耗完, 并又会进入下一次直通过程。如此恶性循环使变压器副边一直处于短路,即变换器副边处于直通的状态,情况严重的话会损坏整流管和续流管,甚至损坏变换器,因此必须用一种方法,在下个周期变压器副边电压为上正下负之前就将s3的栅极电荷放掉,以保证不出现直通的现象。



如图5所示,对原来的栅极电荷保持电路进行改进,将原边ic产生的占空比分为两路,一路通过加延时驱动主功率管,另一路通过驱动变压器隔离驱动s4,因 为变压器副边电压为上正下负的建立和原边主功率管s1的开通几乎是同时的,那么采用图中的方法后,当在原边开关管开通之前,即变压器副边电压变为上正下负之前,s4就由原边提供的一个驱动而开通,并使得续流管s3的栅极电荷通过s4释放掉,提前使s3关断,从而避免了直通的发生,该方法其他电路的接法与以前提出的栅极电荷保持电路一样,这样,该电路即实现了栅极电荷保持的功能,又避免了变换器直通的发生。

如图6所示,给出了改进后电路各个开关管的驱动波形,由图中可以看出,在s1开通之前提前开通s4,将s3的栅极电荷放掉,避免了变压器副边直通的发生。


3 外驱同步整流

对于采用变压器副边电压来驱动自驱型的同步整流,即该电压上正下负的时候驱动整流管s2,该电压下正上负的时候驱动续流管s3,由于这两个驱动电压采的 是同一个电压,因此这两个驱动不会存在交叠,不需要进行处理。但是对于外驱型同步整流的方法,整流管和续流管的驱动之间必须加入死区,使两个驱动不出现交叠的部分,进而防止变换器副边出现直通。本文采用的外驱同步整流的原理框图如图7(a)所示。



本文中首先将原边ic输出的信号经过驱动变压器隔离传输到副边,再利用同步整流驱动芯片将这个信号进行处理,在同步整流芯片内部可简单看成是一个 固定的电容,通过在外部接电阻形成rc冲放电来实现延时,最终通过芯片处理同时延时了整流管s2以及续流管s3驱动信号的上升沿,从而在两个驱动之间加入死区,如图7(b)中波形所示。

同时,因为副边加了一个同步整流的芯片,而由于芯片本身工作的延时,使得输出信号整体对输入有一个延时,因此必须在原边也加入一个电路来补偿这个延时,较好的方法就是在原边同样加入一个同步整流芯片,这样使得对驱动的控制更加方便和容易,而且可以保证足够的驱动能力。

另外,可以通过对副边两个管子驱动的控制来实现整流管和续流管的零电压开关:对于整流管来说,当变压器副边电压变成上正下负,这时,如果整流管的驱动还还不完善,那么电流会从整流管的体二极管流过,如果此时再提供驱动,开通的整流管即为零电压;但考虑到效率,必须保证电流在体二极管中流过的时间很短;而在关断的时候,可以在变压器副边电压变成下正上负之前提前关断整流管,实现整流管零电压关断,同样要保证电流在体二极管中流动的时间很短。对于续流管采取同样的方法实现续流管的零电压开关。

关键字:同步整流  正激变换器 编辑:探路者 引用地址:同步整流面面观:如何用对正激变换器?

上一篇:高手教你如何计算逆变器输出滤波电感
下一篇:一个超高性价比的外围极简移动电源方案

推荐阅读最新更新时间:2023-10-12 22:44

隔离开关电源同步整流器数字控制与驱动技术
摘要:叙述了在SMPS隔离拓扑中能数字控制尤其是能适当关断作为整流器使用的一只或两只MOSFET的一种方法,同时介绍了推荐技术的基本电路履行及智能驱动器STSRx系列ICs。关键词:同步整流器;数字控制与驱动;STSRx系列智能驱动器 1引言 在主PWM控制器位于初级侧的低DC输出电压隔离型开关电源(SMPS)中,通常采用专门设计的MOSFET作为同步整流器(SR)。作为SR使用的MOSFET具有非常小的导通损耗,有助于提高系统效率。 在初级侧控制的隔离SMPS拓扑中,由于在隔离变压器次级侧没有PWM控制信号,故欲产生适当的SR控制信号显得比较困难。但是,可以从变压器次级输出获得有关数据。由于
[工业控制]
隔离开关电源<font color='red'>同步整流</font>器数字控制与驱动技术
同步整流选择最优化的MOSFET
中心议题: 同步整流 基础知识 优化同步整流MOSFET 解决方案: 确定优化MOSFET的负载电流 借助四象限SR器件优化表选择MOSFET 1. 引言 电源转换器的封装密度日益提高和节能标准越来越严格,要求不断提高电源级的能效。隔离式电源转换器的次级整流产生的严重的二极管正向损耗是主要的损耗,因此,只有利用同步整流(SR)才可能达到这些标准要求的能效水平。用MOSFET替代二极管引发了新的挑战——优化系统能效和控制电压过冲。本应用笔记介绍了通过利用英飞凌OptiMOS™3解决方案的优化表(适用于30 V、40 V、60 V、75 V、80 V、100 V、120 V
[电源管理]
为<font color='red'>同步整流</font>选择最优化的MOSFET
控制驱动同步整流简介
     在研究了自驱动同步整流技术之后,我们来关注控制驱动的同步整流,控制驱动的同步整流技术比自驱动通常要复杂一些。当然,控制驱动技术能克服自驱动技术的所有局限,消除体二极管导通,使用精确时间控制电路可减小反向恢复损耗,更进一步,栅驱动电压可设置在最佳电平以使RDS(ON)最小。以及将栅驱动也减至最小,栅驱动电压可由线路电压独立地调整稳定。所有这些都来自增加控制复杂程度后的成本提升。   了解了自驱动同步整流的局限,开始画出同步整流栅驱动所希望的波形,并给出可能的控制信号。图1示出两个同步整流的栅-源电压,漏-源电压。同时给出初级侧MOSFET的源漏电压及PWM IC的控制信号。   注意:PWM控制信号为初级侧为初级侧
[电源管理]
控制驱动<font color='red'>同步整流</font>简介
不对称半桥同步整流DC/DC变换器
摘要:简要介绍了不对称半桥同步整流变换器的工作原理,对同步整流管的驱动方式进行了比较和选择,并在分析变换器的整流损耗的基础上,总结出了影响整流损耗和变换器效率的各种参数。 关键词:不对称半桥;同步整流;损耗 引言 目前,对低压大电流输出变换器的研究已经成为重要的课题之一,如何提高这类变换器的效率是研究的重点。在传统的DC/DC变换器中,对于低的输出电压,即使采用通态电压只有0.5V的肖特基二极管作为输出的整流器件,其输出压降造成的损耗亦相当可观。同步整流技术可有效减小整流损耗,适合同步整流技术的拓扑有多种形式,其中,采用同步整流的不对称半桥变换器具有显著优势,下面将对该变换器的工作原理,同步整流驱动方式的选择以及同步整流管损耗作详尽
[电源管理]
同步整流实现反激变换器设计
  引言   反激变换器具有电路简单、输入输出电压隔离、成本低、空间要求少等优点,在小功率开关电源中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流二极管通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态电阻极低的专用功率MOSFET来取代整流二极管。把同步整流技术应用到反激变换器能够很好提高变换器的效率。   1 同步整流反激变换器原理   反激变换器次级的整流二极管用同步整流管SR 代替,构成同步整流反激变换器,基本拓扑如图1(a)所示。为实现反激变换器的同步整流,初级MOS 管Q 和次级同步整流管SR 必须按顺序工作,即两管的导通时间不能重叠。当初级MOS 管Q 导通时,SR 关断,变压器
[电源管理]
<font color='red'>同步整流</font>实现反激变换器设计
图文:同步整流技术DC-DC模块电源
摘要: 随着DC-DC模块电源向输出低压大 电流 的方向发展,同步整流技术的应用也越来越广泛。与肖特基整流相比较,很显然,在低压大电流的应用中采用同步整流技术可以获得更高的效率,同时,在某些应用方面,业界也发现采用同步整流技术的DC-DC模块电源存在一些不同的特性,在某些特殊的应用场合,甚至不能直接替换采用肖特基整流的DC-DC模块电源。本文从应用的角度分析了同步整流的技术特征以及对某些应用造成的影响,并提出了改进的同步整流技术方案和该方案的实际应用结果,新的方案在进一步提高效率的情况下,使电源的输出特性与肖特基整流更加接近,能更大范围地满足应用的要求。   1、 概述 DC-DC模块电源为了满足小型化的
[电源管理]
图文:<font color='red'>同步整流</font>技术DC-DC模块电源
反激、正激、推挽电路的自偏置同步整流电路
自驱动同步整流   这里给出反激、正激及推挽三种电路的 同步整流 电路。在正常输入电压值附近工作时,效果十分明显,在高端时,效率变坏而且容易损坏MOSFET。其电路如图1所示。输出电压小于5V时才适用。      图1. 反激、正激、推挽电路的自偏置同步整流电路
[电源管理]
反激、正激、推挽电路的自偏置<font color='red'>同步整流</font>电路
交叉级联正激式同步整流拓朴实现DC-DC变换器
1 概述 DC-DC变换器是开关电源的核心组成部份,常用的正激式和反激式电路拓朴。常规正 激式变换器的功率处理电路只有一级,存在MOSFET功率开关电压应力大,特别是当二次侧采用自偏置同步整流方式,输入电压变化范围较宽,如输入电压为75V时,存在栅极偏置电压过高,甚至有可能因栅压太高而损坏同步整流MOSFET的危险。而且当输出电流较大时,输出电感上的损耗将大大增加,严重地影响了效率的提升。使用交叉级联正激式同步整流变换电路,不但输出滤波电感线圈可省去,实现高效率、高可靠DC-DC变换器,达到最佳同步整流效果。 2 基本技术   2.1交叉级联正激变换原理 交叉 级 联变换的拓朴如图1所示,前级用于稳压,后级用于隔离的两级交叉级联的正
[电源管理]
交叉级联正激式<font color='red'>同步整流</font>拓朴实现DC-DC变换器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved