用于风力发电的TwinCAT3状态监测系统

最新更新时间:2014-10-16来源: 互联网关键字:风力发电  TwinCAT3 手机看文章 扫描二维码
随时随地手机看文章

  风力发电机组中的自动化程度正在不断地提升。除了主控系统外,在线监测和风场网络也发挥着越来越重要的作用。许多传统控制器的供应商遇到了无法逾越的性能瓶颈。其解决办法就是自动化系统,该系统以一套科学方法为基础,将所需的测量设备集成到标准控制架构中。

  Beckhoff科技自动化技术将高性能工业PC或嵌入式控制器、高确定性的EtherCAT现场总线系统和智能软件完美整合于一体。这些组件也是在对风力发电机组进行自动化改造所不可或缺的。风力发电机组制造商们想要使用相同的系统完成控制任务、监控、电网同步和系统间通信。只要想到在控制器上处理的复杂状态监测算法,使用多核CPU的优势就显而易见了。Beckhoff目前推出了新型CX2000系列,这些功能强大的CPU是风力发电机组制造商们喜爱的导轨安装式嵌入式控制器。CX2000系列采用的是Intel Sandy Bridge处理器。除此之外,还有经济型Sandy Bridge Celeron?、Intel?Core? i7处理器可供用户选择。甚至配备了1.5GHz处理器(双核)的CX2030系列采用的也是无风扇设计,因为没有旋转部件,因此运行也非常稳定。

  因此必须使用合适的软件来充分发挥这些控制器的性能优势。这就是为什么要使用Beckhoff TwinCAT3控制软件的原因。TwinCAT3的实时环境使得任意数量的PLC、安全PLC和C++任务都能在同一个或不同的CPU内核上执行。

  1.TwinCAT3状态监测库

  最新的TwinCAT3状态监测软件库提高了这些选项的利用率。通过快速任务记录原始数据,然后通过慢速任务进行进一步处理。这样可持续记录需测量的数据,然后通过诸如功率谱、峰态、波峰因数及包络谱等算法进行分析。用户无须担心任务间的通信,因为状态监测库会自动对其进行处理。软件库中各个功能块产生的结果会被记录到全局转移托盘(一种内存表)中。在全局转移托盘中,结果会被复制给变量或借助其它算法进行进一步处理。这样,用户便可以配置他们自己的测量和分析链。

  

 

  图1、调用winCAT3中的功率谱功能块 图2、TwinCAT状态监测库提供不同的功能块用于信号分析

  特别在风电行业、智能电网、微电网等领域,必须对这类开发产品进行大量的测试和仿真,因为一旦投入运行,在现场进行修改和升级就会相当耗时,且成本也较高。若要节省时间和开发成本,可以使用Matlab?/Simulink?对源代码进行实时仿真。这样,很多问题在试运行前就可以检测到并进行相应修正。在为TwinCAT3Run-Time环境创建Matlab?/Simulink?模型时,无需使用Beckhoff的特殊组件或对原始模型进行其它修改。Matlab?及Simulink?编译器会自动生成C++代码,然后C++代码会被编译到TwinCAT3模型中。通过实例化,用户可以轻松地重新使用模块。例如,用户可以在TwinCAT中直接看到设置断点的Simulink?框图。

  除了TwinCAT3、状态监测系统和Matlab?/Simulink?集成包之外,TwinCATScope还实现了科技自动化软件所有相关信号的可视化。TwinCATScope由两个组件构成,其中,View组件用于以图表的形式显示信号;Server组件用于将数据记录在目标设备中。TwinCAT3安装文件通常包括基本版的Scope.这特别适合用于系统调试。Scope能够让用户以图形化方式快速概览设备状态。使用不同的光标可以精确读取测量数据,其精度甚至可以达到微秒级范围。如果数值范围较大,可切换至对数显示。Scope产品实现了许多额外的功能,例如长期记录或集成在。NET可视化软件中。所有级别的Scope产品都可显示EtherCAT测量端子模块的超采样值。

  2.EtherCAT:高精度测量技术

  EtherCAT作为一个高速、实时总线系统进一步完善了Beckhoff科技自动化解决方案。EtherCAT不仅是成熟的控制现场总线,而且也是测量现场总线。只有这种基于以太网且具有高度确定性的高速现场总线协议才能实现诸如状态监测集成等复杂应用。EtherCAT功能原理决定了其有用数据传输率远远超过90%的全双工高速以太网,且总线周期时间仅为几微秒。连同前面提到的超采样功能及将数值直接缓存在EtherCAT从站中,采样率可远远超过实际的总线周期:例如,数字量输入端子模块EL1262能够以高达1百万采样点/秒的速度扫描信号。EtherCAT端子模块EL3702能够以16比特的分辨率和高达100kHz的频率采样±10V模拟量信号。EtherCAT从站中的分布式时钟能够确保整个网络中的数据采样在时间上保持同步。抖动被显着降低到小于1微秒,甚至常常会小于100纳秒。

 

  图3、使用TwinCATScope显示对数信号分析

  EL3632也是一种EtherCAT超采样端子模块。该端子模块适合用于状态监测应用,在实际应用中,振动必须通过加速度传感器或麦克风进行采样。带IEPE(压电集成电路)接口的压电传感器可直接连接到双通道端子模块上,无需前置放大器。基于不同等级的硬件滤波,可以实现0.05Hz至50kHz的信号采样频率。EL3632的操作原理与EL3773的操作原理相同。EL3773是一款电力监测端子模块,使用超采样技术采样原始电网数据,采样高达10kHz,实时采集电网电压电流,通过EtherCAT分布时钟又可以满足采集的同步。实时监测各个节点相位、频率、幅值,对电网的波动做出快速调节。使用TwinCAT3的功能库,还能对电网40次以内的谐波,THD等等进行分析。

  EL3773是一款电力监测端子模块,用于采样原始电网数据,而不是原始振动数据。电流和电压采样高达10kHz,这使得端子模块适合与其它网络同步。

  这款宽度仅为12毫米的模块的主要优点在于它具有高度灵活性。EtherCAT总线系统提供了几乎无限的可扩展性能。这就意味着实际的测量应用程序,例如齿轮箱监测,可以在新系统中实施或在现有系统中进行升级改造。由于控制器的结构非常紧凑,且TwinCAT软件接口具有良好的开放性,独立系统将成为主流。该类独立系统目前已在一些陆上风力发电机组中得到应用,用于在CX5020嵌入式控制器的基础上监测主轴承和齿轮箱。为此,用五个EL3632超采样端子模块和一个EL3413电力测量端子模块配备了一个终端控制柜。UMTS调制解调器和紧凑型加热器可以作为附加选项集成。视可用的接口而定,状态监测系统也可集成到现有的控制器中。

  总结

  科技自动化将工程研究成果整合到风力发电机组的自动化系统中,这是传统控制器无法实现的。Beckhoff的PC控制技术理念为集成大量的标准控制之外的高级功能预留了足够的空间。高性能CPU、高速I/O端子模块、EtherCAT通信和TwinCAT自动化软件为实现此目的提供了坚实的技术基础,同样这些高速双向通讯网络、先进的传感和测量技术、先进的设备技术、先进的控制方法,也是未来智能电网的必要技术因素。

关键字:风力发电  TwinCAT3 编辑:探路者 引用地址:用于风力发电的TwinCAT3状态监测系统

上一篇:一种新型的单相双Buck光伏逆变器的设计方案
下一篇:超低功耗的锂电池管理系统设计

推荐阅读最新更新时间:2023-10-12 22:46

一种蓄电池在风力发电中的实现
风是一种潜力很大的新能源,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。在小型风力发电设备中,蓄电池是重要的辅助设备之一。蓄电池在直流发供电系统中起着贮存电能和稳定电压的重要作用。 一、蓄电池容量的确定 所谓蓄电池的容量,是指
[电源管理]
LT1173风力发电机充电控制器
电路如图。由于三连发电机的交流输出电压为1.8VRMs,为提高输出电压,采用了二倍压整流电路,二极管选用低正向压降的肖特基二极管。充电对象为两节镍镉或镍氢电池,满充电时为1.4Vx2=2.8V,防逆流二极管正向压降0.3V,合计为3.1V,故采用3.1V恒压充电。 IC1为DC-DC变换芯片1T1173,三个倍压整流电路的输出电压串联后输入到IC1的Vin端;当反馈端FB的电压低于1.245V时。IC1内部24kHz振荡器起振,其输出端SW2电压升高,经R1、R2分压后使FB端电压也升高,当升高到1.245V后,内部振荡器停振。使输出电压下降,如此反复,获得恒压输出。   图中R1、R2为误差电压检出电阻。输出电压Vo
[电源管理]
LT1173<font color='red'>风力发电</font>机充电控制器
华北工控平板电脑在风力发电监控平台中的应用
系统概要: 节能减排和新能源是未来发展的大趋势,加上政府的大力支持,风能市场也迅速发展。相关数据显示未来20-25年内,世界风能市场每年将递增25%。按照国家规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦。以每千瓦装机容量设备投资7000元计算,未来风电设备市场将高达1400亿元至2100亿元。风电产业的迅猛发展也将萌生风电产业设备控制系统、管理系统及远程监控系统的需求,为工控厂商带来新的机遇。下面将介绍系统集成商采用华北工控平板电脑集成风电行业设备控制监控系统案例。 系统原理: 该风电控制监控设备需要对现场设备运行情况作准确监测和控制,实现数据采集、设备控制,然后将控制信
[工业控制]
华北工控平板电脑在<font color='red'>风力发电</font>监控平台中的应用
DP在风力发电中的应用
在风力发电中,变流器之间,变流器和风机塔之间的数据交换都涉及到通信。而传动单元的控制需要与整个风场的通讯网络相连,就需要大范围,高速,可靠的通讯,所以DP在其中就承担了至关重要的角色。但是在实际情况中,存在一个问题,控制变流器的控制器只能提供CAN通信的接口,和Profibus通信网络相连遇到了两种总线协议标准共存的问题。鼎实公司提供的CAN-DP总线桥产品为解决这个问题提供了关键的作用。 项目综述 我们实验室和对方公司合作的风力发电项目由几个部分组成,包括: ? 网侧变流器及其控制DSP板 ? 转子侧变流器及其控制DSP板 ? 通信部分,包括液晶,本地计算机及其控制DSP板 ? 塔上通信部分 通信部分
[嵌入式]
风力发电用VSG的比较研究
  随着风力发电装机容量的不断增大,很多国家的电力系统运行导则对风电机组的低电压穿越能力做出了规定 ,目前针对双馈型和直驱型风电系统低电压穿越功能的研究非常多 ;研究过程中需要模拟各种类型的电压跌落故障 ,通常是由电压跌落发生器(Voltage Sag Generator,VSG)来实现的。文献 对风力发电中常用的VSG实现方法进行了总结分析,基于变压器形式的VSG 结构简单、可靠性高,容易提高功率等级;基于电力电子变换形式的VSG,则功能强大。文献 基于单相自耦变压器和固态继电器(SSR)实现了一种低成本单相VSG,但是受继电器物理特性的限制,开关动作时间较长,在电压跌落及恢复处可能出现电压中断的情况。文献 基于变压器和由晶闸管
[电源管理]
<font color='red'>风力发电</font>用VSG的比较研究
研华嵌入式工控机在风力发电中的应用
一、风电行业背景 随着国家对风电行业的扶持力度加大,风电产业发展迅猛。2007年中国大陆新增风电机组3155台,装机容量330.4万KW。与2006年当年新增装机133.7万KW相比,2007年当年新增装机增长率为147.1% 2007年中国大陆累积风电机组6?69台,装机容量590.6WKW,风电场158个。分布在21个省市。于2006年累计装机259.9KW相比。2007年累计装机增长率为127.2%,提前3年实现国家《可再生能源法中长期发展规划》中提出的目标。 随着中国风电市场的快速增长以及风电机组制造商新秀的进入,中国风电机组供应市场的竞争格局也正在悄然发生变化。风电场开发商投资建设风电场
[工业控制]
研华嵌入式工控机在<font color='red'>风力发电</font>中的应用
基于rockwell自动化PLC的风力发电通讯系统
  1引言   风力发电技术发展很快,装机容量不断增大,在世界各地都受到了广泛重视。在目前的变速恒频风电系统中,使用双馈感应发电机(DFIG)的双馈型风电系统市场份额最大,使用永磁同步发电机(PMSG)的直驱型系统发展很快 。不管是双馈型还是直驱型风电系统,其整体控制都比较复杂,需要有主控系统来协调变桨、偏航、变流器、测量、保护和监控等多项环节,且风电系统通常运行环境比较恶劣,各执行机构之间可能存在一定的距离,因此通讯问题至关重要 。   可编程序控制器(Programmable Logic Controller,PLC),是一种专为工业环境应用而设计的电子系统,采用可编程序的存储器,在内部存储执行逻辑运算、顺序控制、定时
[电源管理]
基于rockwell自动化PLC的<font color='red'>风力发电</font>通讯系统
基于嵌入式Linux的风力发电监控系统开发平台的构建
    为了适应不同的应用场合,同时考虑到计算机系统的灵活性、可伸缩性以及可裁剪性,一种以应用为中心、以计算机技术为基础、软硬件可裁剪的嵌入式操作系统随之诞生。这种嵌入式系统能适用于对功能、可靠性、成本、体积、功耗要求严格的应用系统。而在众多嵌入式操作系统中,Linux以其体积小、可裁减、运行速度快、网络性能优良、源码公开等优点而被广泛采用。特别是2.6内核版本的Linux更是在实时性能方面有了很大的提高,因此在工业控制场合得到了越来越多的重视和应用。     本文正是在这一背景下,为基于S3C2410的嵌入式平台(扩充了多种外围设备,包括:LCD、A/D、网络芯片等等)构建出一个基于Linux2.6.16内核的嵌入式系统开发平台
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved