基于STM8S103F3的简易Boost电路设计

最新更新时间:2014-11-22来源: 互联网关键字:STM8S103F3  Boost  电路设计 手机看文章 扫描二维码
随时随地手机看文章

由于不需要建立复杂的数学模型,大部分PID控制器靠良好的PID系数整定就能工作的很好。而STM8S103F属于很小的8位单片机,它开发简单便捷、价格适宜,是一种非常好用的单片机。本文中我们运用STM8S103F3来制作一个稳定简单的升压电路。

STM8S103F3是一种TSSOP20封装很小的8位单片机,具有价格低、外设多、开发方便、以及宽工作电压等优点,平均只要1块多就能买一片。这里我们要用到3个定时器、一个UART串口、一个I2C串口、一个SPI串口、一个10位16通道的高速AD,还有看门Doge等。几乎每一个IO口都有自己的外部中断,内部具有多个始终源。

这里暂时只用了两个定时器和ADC。IM1这个高级16位定时器用于产生固定频率可变占空比的PWM波,通过一个引脚进行输出TIM4这个普通8位定时器用于隔一段时间进行PI运算,从而稳定输出电压ADC中的4通道(AIN4)用于检测输出电压,而3通道(AIN3)用于提供一个参考电压,约0.6-0.7V,这个电压利用二极管正向导通压降产生的。

使用参考电压是因为ADC出来的结果是一个整数,还需要乘以单片机电源电压再除以2的10次放才是真正的电压。单片机的供电可能不稳定,如果没有这个参考,那可能会造成输出不稳定。

电路图

运行时配置好定时器TIM1 TIM4还有ADC即可。然后在TIM4中定时运行PID算法。初始化TIM1,由主时钟直接驱动不分频,把它弄成向上计数模式:

TIM1_TimeBaseInit(0, TIM1_COUNTERMODE_UP, DUTYCYCLE_RESOLUTION, 0);

然后把输出通道1配置成PWM模式,高电平有效,同时开启反向的输出,可以给同步整流的管子用wTIM1_OC1Init (TIM1_OCMODE_PWM1,TIM1_OUTPUTSTATE_ENABLE,TIM1_OUTPUTNSTATE_ENABLE,0,TIM1_OCPOLARITY_HIGH,TIM1_OCPOLARITY_HIGH,TIM1_OCIDLESTATE_RESET,TIM1_OCIDLESTATE_RESET);

启动定时器和PWM输出

TIM1_CtrlPWMOutputs(ENABLE);

TIM1_Cmd(ENABLE);

设置占空比为1/320

TIM1_SetCompare1(1);

初始化TIM4,由64次分频的主时钟驱动,当计数到达255的时候触发一次中断。

TIM4_TimeBaseInit(TIM4_PRESCALER_64, 0xFF);

上来就得触发一次更新事件还有中断,让TIM4_PRESCALER_64生效。

TIM4_SetCounter(0xFF);

TIM4_ITConfig(TIM4_IT_UPDATE, ENABLE);

开总中断

rim();

开TIM4

TIM4_Cmd(ENABLE);

本电路设计中的PWM频率计算方法及结果如下:STM8中的主时钟为16MHz。本制作中让STM8全速工作:CLK_HSIPrescalerConfig(CLK_PRESCALER_HSIDIV1),也就是说驱动TIM1的预分频器的频率为16MHz,没有进行分频。当计数到320时自动重装计数器的值,得出PWM频率=16MHz/320=50KHz, PWM的分辨率为100/320%。

关键字:STM8S103F3  Boost  电路设计 编辑:探路者 引用地址:基于STM8S103F3的简易Boost电路设计

上一篇:纠结中理清思路 搞定TL494负反馈问题
下一篇:基于次级稳压反激的开关电源异常状况分析

推荐阅读最新更新时间:2023-10-12 22:49

学好单片机必须要了解的8个电路设计
单片机上拉电阻的选择 大家可以看到复位电路中电阻R1=10k时RST是高电平 ,而当R1=50时RST为低电平,很明显R1=10k时是错误的,单片机一直处在复位状态时根本无法工作。出现这样的原因是由于RST引脚内含三极管,即便在截止状态时也会有少量截止电流,当R取的非常大时,微弱的截止电流通过就产生了高电平。 LED串联电阻的计算问题 通常红色贴片LED:电压1.6V-2.4V,电流2-20mA,在2-5mA亮度有所变化,5mA以上亮度基本无变化。 端口出现不够用的情况 这时可以借助扩展芯片来实现,比如三八译码器74HC138来拓展。
[单片机]
学好单片机必须要了解的8个<font color='red'>电路设计</font>
RF电路设计中降低寄生信号的八大途径
RF电路板设计最重要的是不该有信号的地方要隔离信号,而该有信号的地方一定要获得信号。这就要求我们有意识地采取措施,确保信号隔离于其路径适当的部位。音调、信号、时钟及其在电路板上任何地方生成的所有谐波都可能作为寄生信号混入输出信号,甚至可能会进入混频器和转换器进而被转换、反映并混淆为寄生信号。传输掩模(Transmit mask)要求表明即便最微小的寄生信号也会阻碍产品的发布。 宽带器件支持软件定义无线电(SDR)的这一当前趋势将进一步强调降低寄生信号的重要性。由于可部署统一信号平台设计来满足多种频带需求,因此插入式RF模块可替代其中较多信号可能会相互干扰的较大电路板。包括大多数RF厂商评估板在内的小型插入式RF模块可以
[模拟电子]
RF<font color='red'>电路设计</font>中降低寄生信号的八大途径
TPMS技术及轮胎定位原理的电路设计
TPMS技术及轮胎定位原理 汽车轮胎压力监测系统(TPMS)主要用于在汽车行驶时,适时地对轮胎气压进行自动监测,对轮胎漏气造成低胎压和高温高胎压爆胎进行预警,确保行车安全。 TPMS中的轮胎定位是指系统接受轮胎发射模块发出的信号,并识别、判定出是哪个轮胎的过程。 轮胎重新定位问题的提出 汽车因为前后左右车轮负荷不均、前轮负责转向和前后轴悬挂角度不同等原因,通常各轮胎磨损程度和位置也不同。为了延长轮胎的使用寿命,达到四个轮胎同步均匀磨损的效果,这就需要定期进行轮胎换位。 在轮胎换位的过程中,相应的发射检测模块也会换位。这就导致了原先存储在接收显示模块MCU中的ID码与轮胎对应识别关系信息不再适用于换胎后的轮胎位置,即显示屏
[模拟电子]
TPMS技术及轮胎定位原理的<font color='red'>电路设计</font>
电源电路设计
  两只功率晶体管组成推挽电路,将已经由桥式整流电路整流过的直流电在变压器上整形为高频脉动电流,经变压器变压后产生低压交流电。经变压器输出的低压交流电压大约为15V,在多个线性整流块LM7812、LM7912、LM7805的作用下,电压整形为直流±12V和+5V。由于直流3.3V电压使用电流非常低,直接采用分压取得。需要注意的是,LCD背光灯起动时有一个很大的冲击电流,应采用相应电路进行。
[电源管理]
电源<font color='red'>电路设计</font>
采用CD40l06的车灯控制电路设计
  本设计是以六施密特触发器CD40l06为核心组成的多用车灯控制电路。该电路能实现在正常行驶状态下彩灯循环、在刹车和转向时进行闪光提示的功能,通常用来作为摩托车或汽车的尾灯。   当车正常行驶时,低频振荡器在电源的作用下起振,产生低频脉冲信号。当处于脉冲信号上升沿时,VD2、VD4、VT1都导通,输出高电平经CD40106的旭、A3、M、AS反相后变为低电平状态,使VD7和VD8截止。此时状态为发光二极管LED9~LED 14被点亮。当处于脉冲信号下降沿时,VD2、VD4、VT1都截止,此时状态为发光二极管LED5~LED8、LED15、LED 1 6被点亮。当C2放电完成后,CD40 106的A3、M输出高电平,VD7和VD2
[电源管理]
采用CD40l06的车灯控制<font color='red'>电路设计</font>
车载信息的硬件电路设计
硬件电路   主控模块的处理器采用三星公司的S3C2410,以其为核心扩展64MB的Nand-Flash和2MB的Nor-Flash用于存放启动代码、嵌入 式Linux操作系统等,64MB的SDRAM用做系统运行时的内存,LCD提供了更好的人机交互界面。   硬件结构图如图1所示。  图1 硬件结构图   ARM微控制器作为核心控制电路,作为硬件系统的中枢控制中心,主要用于协调和管理系统中的其他硬件。核心控制电路 具备丰富的接口电路,以满足不同子模块的不同接口要求。   FPGA协处理器,可以负责完成车载信息系统中各子模块中算法要求高编程处理性能。例如,对于各种音频/视频流媒体等 高速数字信号的处
[单片机]
车载信息的硬件<font color='red'>电路设计</font>
可扩展的PMIC可简化汽车摄像头模块电源电路设计
汽车摄像头模块设计人员必须在缩短上市的同时,创建更小的摄像头模块设计,这些设计可扩展并可重复用于各种类型的图像序列化器和传感器。在本文中,我将解决汽车摄像头模块设计的几个关键设计挑战,包括设计简化和平台可扩展性。 借助可扩展的PMIC简化设计并加快产品上市时间 维护一个通用电源设计平台有助于工程师缩短设计时间,从而缩短产品上市时间。具有集成电压监控器的管脚对管脚和可编程电源管理集成电路(PMICs)可从非功能性安全应用(例如环视摄像头)扩展到功能性安全应用(例如自动驾驶汽车中的驾驶员监测、电子后视镜和摄像头),而无需重新设计电源电路。 可编程PMIC有两种类型:软件可编程PMICs和硬件可编程PMICs。软件可编程PM
[汽车电子]
基于AT89C52单片机近距离无线通信系统电路设计
  短距离无线传输具有抗干扰性能强、可靠性高、安全性好、受地理条件限制少、安装灵活等优点,在许多领域有着广泛的应用前景。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的实际需求,短距离无线通信逐渐引起广泛关注。常见的短距离无线通信有基于802.11的无线局域网WLAN、蓝牙 (blueTooth)、HomeRF及欧洲的HiperLAN(高性能无线局域网),但其硬件设计、接口方式、通信协议及软件堆栈复杂,需专门的开发系统,开发成本高、周期长,最终产品成本也高。因此这些技术在嵌入式系统中并未得到广泛应用。普通RF产品不存在这些问题,且短距离无线数据传输技术成熟,功能简单、携带方便,使其在嵌入式短程无线产品中得到了广泛应用。
[单片机]
基于AT89C52单片机近距离无线通信系统<font color='red'>电路设计</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved