开关电源主电路拓扑结构的分析与比较

最新更新时间:2014-11-30来源: 互联网关键字:开关电源  电路拓扑结构 手机看文章 扫描二维码
随时随地手机看文章

1 引言

被誉为高效节能电源。它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。

的基本结构通常由功率转换主电路和控制电路两大部分所组成。其中主电路进行功率转换,它是的核心部分,对电源设备的电性能、效率、温升、可靠性、体积和重量等指标有决定性的作用。

主电路中开关转换器的拓扑结构,是指能用于转换、控制和调节输入电压的功率开关元件和储能元件的不同配置。开关转换器拓扑结构可分为两种基本类型:非隔离式和隔离式。这两种类型中又各自包含有不同的电路拓扑种类。

2 非隔离开关转换器

对于小功率转换器(例如100W以下),实际上用开关晶体管、开关二极管、电感、电容各一个,就可以组成一台非隔离式DC/DC转换器,是各种 DC/DC转换器中最简单的拓扑。其主电路的核心是三端PWM开关,它表示DC/DC转换器PWM开关组合。开关晶体管、开关二极管和电感元件的不同组合,可以构成降压(Buck)、升压(Boost)、降压-升压型(Buck-Boost)和升压-降压型(Boost -Buck)型4种DC/DC转换器的拓扑结构。

2.1降压型拓扑结构

降压型DC/DC转换器将输入电压变换成 0≤U0≤Ui 的稳定输出电压,所以又称降压开关电源。图1为降压型DC/DC转换器的典型电路。Ui 为输入电源,通常为电池或电池组。S是主开关管,二极管D是辅助开关管,也称为整流管,一般使用具有较低正向导通电压的肖特基二极管。S是由来自控制电路的脉冲信号控制开关。RL表示负载电阻。

图1 降压型DC/DC转换器电路

在一个开关周期中,首先,在控制电路作用下S导通,二极管因受反向偏压而截止,电流由电池流经S、电感L到电容C和负载。电感电流持续上升,电感储能在增加,能量由电池传送到电感并存储在电感中;第二阶段,控制电路使S截止,切断电池和电感元件的连接,于是电感产生感生电动势使电流维持原来的流向,二极管 D导通,为电感电流构成通路,电流由电感L流向电容C和负载,电感电流随着时间而下降,能量由电感流向负载。

经电感L、电容C滤波,在负载RL上可得到脉动很小的直流电压Uo。为推导降压型DC/DC转换器的输出电压与输入电压间的关系,在主开关管S导通、二极管D截止时,忽略S管的正向导通压降;整流管导通、主开关管关断时,忽略二极管的压降 ;忽略电感、电容的寄生电阻。因为只有在开关管导通期间,储能电感 L的电流增加量和开关管截止期间储能电感L中的电流减少量相等时,电路才达到平衡状态,即在稳态时,电感充放电伏秒积相等,因此:

D为占空比。改变D,输出电压Uo的平均值也就随之改变。因此,当负载及电网电压变化时,可以通过闭合的反馈控制回路自动地调整占空比D来使输出电压Uo维持不变。

2.2升压型拓扑结构

升压型DC/DC转换器将输入电压变换成较高的稳定输出电压,又称升压开关电源。

如图2是升压型开关电源的典型电路。Ui 为输入电源,S是主开关管,D是整流管。该电路的每个开关周期同样可分为两个阶段:第一阶段,S导通,忽略开关管的正向导通压降,D截止。此时,电感电流线性上升,能量从输入电源转换成磁场能存储在电感L中,负载RL上得到的电压由电容C提供;第二阶段:S截止,电感电流 开始线性下降,能量由电感元件流向负载。经电容C滤波,在负载RL上可得到脉动很小的直流电压Uo。利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:

图2 升压型转换器电路

2.3降压-升压型拓扑结构

这个电路的开关管和负载构成并联。在S导通时,电流通过L平波,电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui加上UL,因而有升压作用。

图3是降压-升压型的典型电路。Ui 为输入电源,S是主开关管,D是整流管。S在控制信号作用下在导通、截止状态间转换。该电路的工作可简单分析如下:第一阶段,S导通,D截止,忽略开关管的正向导通压降,此时,电感电流线性上升,能量从输入电源转换成磁场能存储在电感L中,此时负载得到的能量来自电容C;第二阶段,D导通,S截止,电感电流开始线性下降,能量由电感元件流向电容和负载。经电容C滤波,在负载RL上可得到脉动很小的直流电压 Uo ,计算其平均值,推出降压-升压型转换器的输出电压与输入电压间的关系式:

式(3)中,若改变占空比D,则输出电压既可低于电源电压,也可能高于电源电压。

图3 降压-升压型转换器电路

2.4升压-降压型DC/DC转换器

图4是升压-降压型典型电路。升压-降压型DC/DC转换器的基本工作原理如下:

第一阶段:S导通,D截止。在输入回路,电流由电池流向电感L1和主开关管S,电感L1接收来自电池的能量,电感电流线性增加;在输出回路,电容C1通过S对滤波电容C2、负载RL及L2放电,因此D受反向偏压而截止,这时C1将能量转移给L2。

第二阶段:S截止,D导通。当S截止时,在输出回路,L2要维持电流方向不变,产生感应电动势使D导通,于是能量由L2传送到C2和负载RL;在输入回路,电流由电池流经电感L1、电容C1和二极管D,以前一阶段的电感电流终值作为本阶段的电流初值开始向藕合电容C1充电,随着电容两端电压的增加,电感电流逐渐减少,能量由L1转移到C1中。

升压-降压型DC/DC转换器的输出电压与输入电压间的关系式同降压-升压型关系。升压-降压型DC/DC转换器电路复杂,但纹波性能得到改善。若将两电感绕在同一磁芯上,选择合适的匝比、耦合系数等,可得到零纹波输出。

图4 升压-降压型DC/DC转换器电路

3 隔离开关转换器

隔离式是指输入端与输出端电气不相通,通过脉冲变压器的磁耦合方式传递能量,输入输出完全电气隔离。隔离式又可分为以下几种拓扑结构。

3.1单端反激式转换器

电路中所谓的单端是指转换器的磁芯仅工作在磁滞回线的一侧。所谓的反激是指当功率调整管T导通时,变压器N在初级绕组中储存能量;当功率调整管T 截止时,变压器N通过次级绕组向负载传递能量。即原/副边交错通断。这样可以避免变压器磁能被积累的问题,但是由于变压器存在漏感,将在原边形成电压尖峰,可能击穿调整管T,因此需要设置RCD缓冲电路。单端反激式转换电路如图5所示。反激电路不应工作于负载开路状态。

当工作于电流连续模式时,单端正激式转换电路如图6所示。从电路原理图上看,正激式与反激式很相似,表面上只是变压器同名端的区别,但工作过程不同。当T导通时,变压器N的初级和次级绕组同时导通,向负载传送能量,滤波电感L储存能量;当T截止时,电感L通过二极管D1继续向负载释放能量。

图5 单端反激式DC/DC转换电路

该电路的最大问题是:功率管T交替工作于通/断两种状态,当功率管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,可能会使功率调整管烧毁。

图6 单端正激式DC/DC转换电路

在输出滤波电感电流连续的情况下:

(5)

如果输出电感电路电流不连续,输出电压UO将高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下:

(6)

3.3推挽式DC/DC转换器

推挽式DC/DC转换电路如图7所示。这种电路结构的特点是:变压器原边是两个对称线圈,两只功率调整管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

图7 推挽式DC/DC转换电路

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

该电路的主要缺点是:电路结构相对复杂,成本较高,变压器绕组利用率低,对功率管的耐压要求比较高。当滤波电感L的电流连续时:

(7)

如果输出电感电流不连续,输出电压Uo将高于式中的计算值,并随负载减小而升高,在负载电流为零的极限情况下:

(8)

3.4全桥式转换器

全桥式转换电路如图8所示。这种电路结构的特点是:由4只相同的调整管接成电桥结构驱动变压器的原边。工作过程:互为对角的两个功率管同时导通,同一侧上的两功率管交替导通,使变压器一次侧形成幅值为 的交流电压,改变PWM占空比就可以改变输出电压。

图8 全桥式转换电路

该电路使用的功率管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1kW以上超大功率电路中。

该电路的主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

当滤波电感L的电流连续时:

(9)

如果输出电感电流不连续,输出电压Uo将高于式中的计算值,并随负载减小而升高,在负载电流为零的极限情况下:

(10)

3.5半桥式DC/DC转换器

半桥式DC/DC转换电路如图9所示。由图可以看出电路的结构类似于全桥式,只是把其中的两只调整管换成了两只等值的大电容C1、C2。工作过程:T1和T2交替导通,使变压器一次侧形成幅值为 的交流电压,改变PWM的占空比就可以改变输出电压。

图9 半桥式DC/DC转换电路

主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十W到kW都可以;开关管耐压要求较低;电路成本比全桥电路低等。这种电路常常被用于各种非稳压输出的DC转换器,如电子荧光灯驱动电路中。

(11)

如果输出电感电流不连续,输出电压Uo将高于式中的计算值,并随负载减小而升高,在负载电流为零的极限情况下:

4 结论

主电路中转换器拓扑结构的选择与设计,在满足性能要求的前提下还要综合考验电源系统造价、性能指标和输入/输出负载特性等因素。在所有实际应用中,就电气特性而言,没有哪一个转换器是最佳的。换言之,不同的应用,应选取不同的最合适的转换器。

参考文献

[1] 周志敏,周纪海, 纪爱华.实用电路[M].北京:中国电力出版社,2005.

[2] 周志敏,周纪海, 纪爱华.实用技术—— 设计与应用(第2版)[M].北京:人民邮电出版社,2007.

[3] 赵同贺,等.新型开关电源典型电路设计与应用[M]. 北京:机械工业出版社,2009.

[4] 郭创,张宗麟, 樊蓉. 常规开关结构及典型应用电路[J].电子元件与材料,2003,22(8).38-41.

[5] 候清江,张黎强, 许栋刚.开关电源的基本原理及发展趋势探析[J].制造业自动化,2010,32(9).160-162+169.

作者简介

姚志树(1978-),男,江苏盐城市人,硕士,讲师,研究方向为电力电子技术、电源技术。

关键字:开关电源  电路拓扑结构 编辑:探路者 引用地址:开关电源主电路拓扑结构的分析与比较

上一篇:适用于汽车无线电系统AM和FM波段的低噪声开关电源
下一篇:开关电源的可靠性设计

推荐阅读最新更新时间:2023-10-12 22:49

开关电源电路设计秘笈之解决电源电路损耗问题
您是否曾详细计算过设计中的预计组件损耗,结果却发现与实验室测量结果有较大出入呢?本文介绍了一种简便方法,以帮助您消除计算结果与实际测量结果之间的差异。该方法基于泰勒级数展开式,其中规定(在赋予一定自由条件下)任何函数都可分解成一个多项式,如下所示:     如果意识到电源损耗与输出电流相关(可用输出电流替换X),那么系数项就能很好地与不同来源的电源功率损耗联系起来。例如,ao代表诸如栅极驱动、偏压电源和磁芯的固定开销损耗以及功率晶体管Coss充电与放电之类的损耗。这些损耗与输出电流无关。第二项相关联的损耗a1直接与输出电流相关,其典型表现为输出二极管损耗和开关损耗。在输出二极管中,大多数损耗是由于结电压引起的,因此损耗会随着输出
[电源管理]
<font color='red'>开关电源</font><font color='red'>电路</font>设计秘笈之解决电源<font color='red'>电路</font>损耗问题
高频开关电源的关键布局技巧
目前的交换式稳压器和 电源 设计更精巧、性能也更强大,但其面临的挑战之一,在于不断加速的开关频率使得PCB设计更加困难。PCB布局正成为区分一个 开关电源 设计好坏的分水岭。本文将就如何在第一次就实现良好PCB布局提出建议。 以一个将24V降为3.3V的3A交换式稳压器为例。乍看之下,一个10W稳压器不会太困难,所以设计师通常会忍不住直接进入建构阶段。 不过,在采用像美国国家 半导体 的Webench等设计软件后,我们可观察该构想实际上会遭遇哪些问题。输入上述要求后,Webench会选出该公司‘Simpler Switcher’系列的LM25576(一款包括3A FET的42V输入组件)。它采用的是带散热垫的T
[电源管理]
高频<font color='red'>开关电源</font>的关键布局技巧
高频开关电源的电荷控制
  1979年,A.Carpel提出了用电荷控制的DC/DC转换器双环控制系统,图1(a)为电荷控制反激式转换器的原理电路,图中未画出电压环。图1(b)为工作波形。在电荷控制的模式中,检测的是主开关管V的电流iv,然后经过电容CB积分。电容电压uT与电荷Q成正比,uT与其给定值Ue比较后,经过PWM产生占空比Du。   图1 电荷控制的DC/DC反激式转换器         电荷控制是一种特殊的电流型控制。其工作原理是:在每个开关周期开始时,主功率开关管V开通,在tON时间内,开关电流iv的积分为电荷Q,Q与开关电流iv的平均值Iv成正比,利用ton时间内CT上的电荷量作为负反馈控制信号。当电容q上的电压峰
[电源管理]
高频<font color='red'>开关电源</font>的电荷控制
教你如何正确的为开关电源选择其合适的电感
电感 是 开关电源 中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一
[电源管理]
教你如何正确的为<font color='red'>开关电源</font>选择其合适的电感
开关电源原理与设计(连载73)
      接连载72       为了更好地对多层线圈的分布电容进一步进行分析,我们把(2-114)式改写成一个静态电容与一个动态系数相乘的形式,即:         当变压器的线圈为多层时,我们只需反复利用(2-117)式来对相邻两层之间的分布电容独立进行计算,然后把结果相加即可。如果一定要写出计算多层线圈分布电容的表达式,则变压器多层线圈的分布电容可表示为: 式中,     为第i层与i+1层线圈之间的静态电容,i= 1、2、3、• • •、n ,n为所求总分布电容的变压器初级线圈或次级线圈的层数; gi为第i 层与i+1层线圈之间的平均周长; kui为第i 层与i+1层线圈之间分布电容的动态系
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载73)
开关电源的主要分类
 人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类。   微型低功率开关电源   开关电源正在走向大众化,微型化。开关电源将逐步取代变压器在生活中的所有应用,低功率微型开关电源的应用要首先体现在,数显表、智能电表、手机充电器等方面。现阶段国家在大力推广智能电网建设,对电能表的要求大幅提高,开关电源将逐步取代变压器在电能表上面的应用。   反转式串联开关电源   反转式串联开关电源与一般串联式开关电源的区别是,这种反转式串联开关电源输出的电压是负电压,正好与一般串联式开关
[电源管理]
ADIADP1053三路数字电源控制方案
    ADI公司的ADP1053是三路数字电源控制器,基于电压模式PWM架构,能对三路单独输出提供控制,监视和保护,其它两路带反馈控制,另一路带固定占空比而未调整电压,三路的开关频率从50kHz到625kHz可单独编程,适用于隔离和非隔离的DC/DC转换器,AC/DC转换器.本文介绍了ADP1053主要特性, 功能方框图, 简化应用电路图以及两种典型应用电路图.     The ADP1053, based on a voltage mode PWM architecture, is a flexible, application dedicated digital controller designed for isolate
[电源管理]
ADIADP1053三路数字电源控制方案
一个简易型115VAC供电的彩色电视机开关电源
摘要:介绍一个工作于115VAC的简易型全分立元器件彩色电视机开关电源。该电源基于早年国内常用的三洋80P机芯电路,经过重新设计高频变压器以及调整元器件参数而成。文中给出基本原理,设计数据及测试结果,可供有意于开拓北美市场的电视机厂家参考。 关键词:彩色电视机 开关电源 1 引言 图1所示为220VAC供电的三洋80P机芯电源,它早年曾广泛使用在一些国内电视机中,其特点是:采用常规双极型功率管, 全分立元器件,电路简单,成本低,但 却能满足电视机基本稳压要求,而且EMI噪音特少。其缺点是:动态反应较慢,AC/DC转换效率稍低(最高只有80%),稳压范围较窄(只有VI%26;#177;10%)
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved