电阻性电源负载的模拟在线电阻监视

最新更新时间:2015-02-25来源: 互联网关键字:电阻性  电源负载 手机看文章 扫描二维码
随时随地手机看文章
在一些电源控制应用中,基于可靠性或安全性的原因,需要对阻性电源负载的工作状态(健康情况)进行连续的评估。医疗设备(电热垫,电热毛巾和电热毯)中使用的发热电阻就是这种应用的很好例子。为了有效果,评估时应采用连续监视电源负载电阻的方式,并且不能干扰系统的正常工作(在线监视)。监视系统应提供至少一个数字告警信号,该信号需要在阻值超过预设范围时被激活。

带简单的电阻性负载电流监视功能的典型电源控制应用可以如图1所示那样建模,其中忽略了任何感抗现象。在这种集总模型中,U是供电电压;I是电路中的电流;R是电源负载(纯阻性);Rp1、Rp2和Rp3代表所有寄生电阻,建模的是互连走线、连接器和任何可能的机械或电子开关(闭合时)的电阻;Rs是电流检测电阻。设Rp是总的寄生电阻,定义为Rp = Rp1 + Rp2 + Rp3。如果U和Rp是常数,那么I在R改变时才会改变,因为Rs是常数。因此评估R的偏差只需要监视电流即可。然而在大多数情况下,实际的U和Rp不是固定不变的。事实上,即使在常见的恒压PWM电源控制应用中,U也可能因为电源过高的内部阻抗(不良调整)和/或电压容差而偏离期望值。寄生电阻Rp包含导线、连接器和开关的电阻,它们通常会因温度、用途和老化的原因而发生变化。举例来说,如果开关是功率MOSFET实现的,那么由于它具有正温度系数,它的Rds(ON)会随温度的上升而增加。

 

 

很明显,U和Rp的变化将影响基于电流的简单电阻监视方法的精度。为了克服这个问题,可以在计算实际负载电阻(R)的基础上进行电阻监视,方法是测量负载电流和负载电压,然后根据欧姆定律计算它们相除的结果。现在典型的方法是在数字域中做这种除法,它要求至少一个带两个复用输入通道的模数转换器(ADC)和一些处理单元(即微控制器)。这种方法很有吸引力,特别是当系统中已经有微控制器的时候。然而,由于可靠性或安全方面的原因,用软件完成计算任务的这种方法可能行不通,或者根本不可取。

例如在医疗级设备中,标准IEC 60601-1(条款14)规定,如果由可编程系统来确保至关重要的安全性,那么开发周期必须遵循规定的程序,这将使最终系统的开发和随后的认证进一步复杂化。另外一种方法是在模拟域中执行除法操作,方法是使用精密的模拟分压集成电路(IC)。然而,这种IC一般很昂贵,而且不很常见。不过在模拟域中,我们可以利用经典的惠斯通电桥——在低功耗电阻测量中一种很著名的电路。它将是我们讨论的起点。

在展开讨论之前,最好是将R定义为R = Rn(1+δ),其中Rn是R的归一化值,δ是R的相对误差,定义为δ = R/Rn – 1。另外,让我们将阈值点δi 和δs定义为监视系统启动故障条件信号点之外的δ值(分别对应更差和更好)。在图2a)中,惠斯通电桥和比较器用来产生逻辑信号,指示R是大于还是小于某个阈值。很容易表明,这个电阻阈值独立于U,它是这种电桥拓扑的一个特性。在图2 b)中,通过在参考支路和两个比较器中使用一个额外的电阻(R3),可以扩展拓扑,实现阻值窗口比较器。阈值点δi 和δs由R1、R2和R3之间的比值设定,因为它们确定了比较器(Ut1和Ut2)的阈值电压。

 

 

虽然图2 b)所示电路的阈值点独立于U,但它们仍然受电源分支(图1中所示)寄生电阻的影响。另外,比较器的共模和差分输入电压通常很小(R >> Rs)。事实上,期望的差分输入电压范围与比较器的输入偏移电压(IOV)通常是相当的,因此会严重影响监视系统的精度。

解决方案的通用模型

为了克服Rp依赖性,我们可以将电流与负载电压进行比较,而不是将电流与供电电压U进行比较。此外,我们可以在比较器之间进行适当的电压调整,以克服比较器上很小的差分输入电压引起的参考精度损失问题。这种解决方案的通用模型见图3,它包括寄生电阻Rp1、Rp2和Rp3。在这个模型中,负载电压和负载电流(表示为Rs上的电压)在施加到比较器COMP1和COMP2输入端之前先被同相增益级电路所调整。这些增益级电路总是用运放(OPAMP)和增益确定电阻实现。

需要注意的是,只有当这种运放的IOV范围比比较器的IOV更窄时,才有可能减少由于很小的差分输入电压引起的误差。不过这个条件不难满足,因为精密运放的IOV范围通常都要比精密比较器小,这也是为什么在一些低速高精度应用中将运放用作比较器的原因。

 

 

对电流的差分测量可以转换为更简单的单端测量,方法是将Rs下面的端子连接模拟地(电阻监视部分的地)。图3中的新变量被定义为:

● Gu1,Gu2:负载电压测量的增益,通常小于1。

● Gi1,Gi2:电流测量的增益,通常大于1。

● Uu1,Uu2,Ui1,Ui2:比较器的输入电压(以地为参考)。

● Ud1,Ud2:比较器的差分输入电压,参考点是对应比较器的反相输入端(Ud1 = Uu1 – Ui1; Ud2 = Ui2 – Uu2)。

● Ut1,Ut2:COMP1和COMP2的阈值电压。在COMP1阈值点,Ut1 = Uu1 = Ui1, Ud1 = 0;在COMP2阈值点,Ut2 = Uu2 = Ui2, Ud2 = 0。

模型的阈值点(δi, δs)由模型增益定义,见公式(1)。从公式(1)可以看到,阈值点不受U或Rp的影响,这也是我们希望看到的结果。

 

 

现在我们应该把实际阈值点(δi, δs)和想要的阈值点(±T)区分开来,后者通常相当于容差R加上一些安全余量。注意,为了简化分析,我们假设想要的阈值点刚好相反。通过选择增益开展模型调整,目的是使δi = (-T)和δs = T。基于这样的考虑,模型增益见下面的公式(2)、(3)、(4)和(5)。在这些公式中,U、Ut1、Ut2和Rp的选择对于最大限度地提高性能来说很关键。这个课题后面再讨论。

 

为了进一步理解模型行为,让我们考虑一个应用例子。针对某个具体应用,假设想要的模型参数规格如下:

 

 

将这些值代入公式(2)、(3)、(4)和(5),可以算出以下这些增益:

Gu1 = 0.201986

Gu2 = 0.168134

Gi1 = 28.4800

Gi2 = 26.7333

假设增益级电路是理想的情况下,图4和图5分别画出了作为δ函数的比较器输入电压(Uu1, Ui1, Uu2, Ui2, Ud1 和Ud2)。在图4中,实线是U=15V时的结果,虚线是U=10V时的结果。Rp值保持不变。从图中可以看出,阈值点(δi和δs)不受U变化的影响。

 

 

在图5中,实线是Rp=10mΩ时的结果,虚线是Rp=200mΩ时的结果。在这两种情况下,U保持不变(U=15V)。从中可以看出,δi 和δs不受Rp变化的影响。

 

 

虽然U和Rp的变化不影响δi 和δs,但它们影响比较器的单端和差分输入电压,见图4和图5。因此模型增益的确定应慎重,要确保满足比较器的共模输入电压范围(CMIVR)要求。在这个例子中,假设比较器能够实现接近地电位的检测,也就是说它们的共模输入电压范围可以从0(或以下)扩展到某个正值。在图4 a)和图5 a)中可以看到,在低于和高于δi 与δs时,相关的输入电压(对δi来说是Uu1和Ui1,对δs来说是Uu2和Ui2)呈现相反的趋势。

因此,相关输入电压在δi和δs处同时具有最高值,分别是Ut1和Ut2。要想比较器在δi 和δs点提供正确的输出状态,Ut1和Ut2必须在它们的共模输入电压范围之内(CMIVR)。如果是这样,相关输入电压可能在低于和高于δi 和δs时超出CMIVR,因为每个比较器至少有一个输入电压在CMIVR内是有保证的,而且大多数比较器在这种情况下仍能提供正确的输出状态。符合工业标准的LM393就是具有这种能力的一个典型例子。从图4 a)和图5 a)中可以看出,Ut1和Ut2不是固定的,它们会随着U增加和/或Rp减小而增大。

当U位于其最大可能值、Rp位于其最小可能值(在大多数情况下可以认为是0)时,将形成在比较器CMIVR方面最差的工作条件。在计算模型增益时应该将这些U和Rp值代入公式(2)、(3)、(4)和(5)。

比较器的输入偏移电压(IOV)有可能导致δi 和δs阈值点偏离期望值,并降低电阻监视的精度。为了尽可能减小这种漂移幅度,我们应该尽可能增加分别对应δi 和δs的Ud1和Ud2斜率模(绝对值),如图4 b)和图5 b)所示。

另外观察图4 a)和图5 a)可以看出,通过增加Ut1和Ut2也可以减小这种漂移。考虑到前面讨论的共模输入电压范围(CMIVR)限制,我们可以得出结论:应选择接近CMIVR上限的Ut1和Ut2电压值,并留一些安全余量应对实际元件的容差和漂移。选好Ut1和Ut2后,就可以将它们与T、Rn、Rs、U (最大值) 和Rp (最小值)一起代入增益公式((2), (3), (4), (5))计算模型增益,完成模型的调整。

相反,当Ud1和Ud2斜率模减小时,由于输入偏移电压(IOV)引起的阈值点漂移将变得更糟,见图4 b)和图5 b)。从这些图还可以看出,这些模值随U的减小和/或Rp的增加而减小。因此最差精度损失发生在最低期望的U值和最高期望的Rp值时。总之,由IOV引起的精度损失行为可以被总结为:针对某个特定的比较器IOV范围,为了满足特定的精度要求,必须重视相应的最小U值和最大Rp值。

也可能在一些特殊情况下,U=0和/或Rp → (+∞)。符合这些情况的例子包括U供电电源的关断或故障、保险丝熔断、PWM应用中功率开关的开路等。在发生这些事件时,所有比较器的输入电压将接近于0,输出信号(Fault)将没有统一的状态。此时Fault应被忽略,或被某些额外的检验电路关闭。

请注意,有关模型调整和性能的上述结论不是专门在分析图4和图5基础上得出来的。这些结论实际上基于的是对模型的数学分析,本文只提供了一些重要的设计公式。

除了比较器的输入偏移电压(IOV)外,监视的精度还受电流检测电阻(Rs)的容差以及增益级电路的误差(包括运放的IOV、增益确定电阻(只有标准值电阻)偏离理想值的幅度以及电阻容差)的影响。鉴于误差源有很多,监视的有效精度最好通过对整个系统执行Monte-Carlo分析进行评估。大多数SPICE仿真器都提供这种分析方法。

关键字:电阻性  电源负载 编辑:探路者 引用地址:电阻性电源负载的模拟在线电阻监视

上一篇:用HVArc Guard MLCC防止电容器电弧放电
下一篇:用于高压、高容量电池系统的低成本 isoSPI 耦合电路

推荐阅读最新更新时间:2023-10-12 22:52

调节器可简化中间电源总线及负载点供电设计
Analog Devices, Inc.( http://www.analog.com/zh/index.html ) (ADI) ,全球领先的高性能信号处理解决方案供应商,最近推出两款 DC-DC 异步开关 调节器 ( http://www.analog.com/zh/switches ) ADP2302( http://www.analog.com/zh/ADP2302 )和 ADP2303( http://www.analog.com/zh/ADP2303 ),这两款调节器是 ADI 公司不断丰富的集成电源管理开关调节器产品系列的最新产品。全新的20 V 2A (ADP2302)和3A (ADP2303) 降压 DC-DC
[电源管理]
面向负载点设计,TI新推高密度电源管理IC
  经济危机时,一个做通信设备的朋友获得了带薪假期。乍听不解,他一语道出了缘由:“设备的耗电量太过惊人。”就在我们以为通信、工业等行业对能耗的要求并不是那么高时,实际上他们也在追求着更高的能效、更高的电源密度以及更灵活的电源控制。与此同时,便携式消费电子也一如既往地提出更复杂的电源要求、不断增高的电池密度以及更狭小的空间。   为此,德州仪器 (TI) 宣布面向负载点设计推出两款最新的电源管理芯片 (IC)——TPS82671 和 TPS84620 。   “负载点设计需要更高电源密度、高效率以及简便易用等优异特性,而这两款全新的电源产品则实现了前所未有的集成度与性能水平,可帮助我们为便携式、电信、基站以及工业市场的广
[电源管理]
可靠的车载电源管理设计 抛负载和冷启动问题的解决
车载 电源管理 的要求正变得愈加苛刻,其要求 电源 能够工作在更宽泛的输入 电压 范围、更高的 电流 及更高的温度极值条件下。这些要求将使开关模式电源设计成为主流,因为这种电源设计具有更大的灵活性、更优异的可配置性和更高的散热效率。 开关模式的电源的核心组件是 DC-DC 转换器。今天的车载转换器必须能够支持各种运行条件,例如:低压运行(也就是冷启动)和正瞬态生存性 (positive transient survivability)(也就是抑制或未抑制的抛负载状态)。车载子系统的出现所带来的更高负载需求使得这些数据的设计变得更为复杂。本文将给设计者提供一个关于车载电源需求的简要介绍,并且介绍一款由 TI 最近
[电源管理]
可靠的车载<font color='red'>电源</font>管理设计 抛<font color='red'>负载</font>和冷启动问题的解决
多路输出电源的最小负载与交叉调整率
我们的技术支持团队经常被问到的一个问题就是关于多路输出电源的最小负载,因此我认为这可以作为一个不错的主题记录下来。 对于低成本、低功率的多路输出电源,其技术规格书常常显示,为了维持调整率,必须为其中一路或多路输出施加最小负载。 为了解释其原因,以下提供了一个简单的三路输出电源的工作原理图。 Input——输入;Output——输出;Line filter——输入滤波电路;Rectifier——整流电路;Switching——开关电路;Control——控制电路;Detect——输出检测 在该图的中部靠右侧是变压器的三个输出绕组。 在输出1(+5V)上,变压器的输出得
[电源管理]
车载电源的无负载损耗
车载电源的无负载损耗 无负载损耗也叫空载电流,是指车载电源在无负载的情况下,自身消耗的最小电流,目前车载电源的空载电流一般小于0.5安培。这个参数描述了车载电源在没有接任何用电器时自身消耗能量的大小,这个数值越小越好。需要说明的是,当车载电源连接了用电器,并且给用电器提供电能时自身消耗的电能可能比无负载损耗大的多,此时车载电源自身消耗能量的程度取决于车载电源的转换效率。 车载电源的转换效率 车载电源又叫逆变器,之所以叫逆变器是因为它工作原理。它的工作原理可分为两个阶段:第一阶段是将低压的直流电转换为265V左右的直流电;第二阶段是真正的转变阶段,它将高压的直流电转变为220V、
[电源管理]
ups电源负载选型的几大误区
ups电源负载选型的几大误区 中国电源学会交流电源专业委员会副主任、专家组组长王其英日前指出,用户在ups选型轻易陷进七大误区: 误区一:以为机房里的ups假如没有变压器就不可靠。 误区二:盲目增加sts。 误区三:觉得功能越全越好。 误区四:以为ups在任何时候都能给出按功率因数算 中国电源学会交流电源专业委员会副主任、专家组组长王其英日前指出,用户在ups选型轻易陷进七大误区: 误区一:以为机房里的ups假如没有变压器就不可靠。 误区二:盲目增加sts。 误区三:觉得功能越全越好。 误区四:以为ups在任何时候都能给出按功率因数算出的有功功率。 这种错误是由于对“输出功率因数”的误称,实际上
[电源管理]
利用ATE测试电源负载的数字可编程精密电阻
图1所示的数字可编程精密电阻可在定制设计的 ATE(自动测试设备)中用作微处理器驱动的电源负载。IC1 是一个 8 位 电流输出型 DAC,即DAC08型DAC ,它驱动电流-电压变换器 IC2A,IC2A又驱动功率 MOSFET Q1 的栅极。被测器件连接到 J1 和 J2。在工作时,来自被测器件的电流在采样电阻 R8A 和 R8B 上形成一个电压。放大器 IC2B 驱动 IC1 的基准输入端,并使反馈路径闭合。当 R8A 和 R8B 上的压降达到 Q2 的 VBE(ON) 时,晶体管 Q2 分流 Q1 的栅极驱动电流,提供过流保护功能。VO 和 IO 分别为输出电压和输出电流,N 代表加到 IC1 的二进制输入的等效十进制值
[电源管理]
利用ATE测试<font color='red'>电源</font><font color='red'>负载</font>的数字可编程精密<font color='red'>电阻</font>
飞兆与Zilker Labs协议提供负载点数字电源产品
2008年5月26日,飞兆半导体公司与Zilker Labs达成一项制造和销售数字电源产品的协议,包括负载点 (point-of-load) 电源器件,专门针对服务器、网络、图像和高端台式应用。 飞兆半导体公司移动、计算、消费和通信产品部执行副总裁Bob Conrad称:“我们很高兴能够扩展功率管理产品系列,尤其是在数字电源领域。这一合作关系使到飞兆半导体能够制造和销售数字电源产品,并提升我们在数字电源市场和应用领域的应用知识,以及促进和推动数字电源的应用。通过与客户建立密切的合作关系,并了解他们面临的挑战,我们能够为功率管理市场上的各种应用,开发和提供下一代先进的数字电源产品和解决方案。Zilker Labs拥有卓
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved