脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。用于体育测量用的脉搏测量大致有指脉和耳脉二种方式。这二种测量方式各有优缺点,指脉测量比较方便、简单,但因为手指上的汗腺较多,指夹常年使用,污染可能会使测量灵敏度下降;耳脉测量比较干净,传感器使用环境污染少,容易维护。但因耳脉较弱,尤其是当季节变化时,所测信号受环境温度影响明显,造成测量结果不准确。
2 脉搏信号的拾取
脉搏信号拾取电路如图1所示,IClA接为单位 增益缓冲器以产生2.5V的基准电压。
红外接收二极管在红外光的照射下能产生电能,单个二极管能产生O.4 V电压,0.5 mA电流。BPW83型红外接收二极管和IR333型红外发射二极管工作波长都是940 nm,在指夹中,红外接收二极管和红外发射二极管相对摆放以获得最佳的指向特性。红外发射二极管中的电流越大,发射角度越小,产生的发射强度就越大。在图l中,RO选100 Ω是基于红外接收二极管感应红外光灵敏度考虑的。R0过大,通过红外发射二极管的电流偏小,BPW83型红外接收二极管无法区别有脉搏和无脉搏时的信号。反之,R0过小,通过的电流偏大,红外接收二极管也不能准确地辨别有脉搏和无脉搏时的信号。当红外发射二极管发射的红外光直接照射到红外接收二极管上时,IC1B的反相输入端电位大于同相输入端电位,Vi为“O”.当手指处于测量位置时,会出现二种情况:一是无脉期。虽然手指遮挡了红外发射二极管发射的红外光,但是,由于红外接收二极管中存在暗电流,仍有lμA的暗电流会造成Vi电位略低于2.5 V.二是有脉期。当有跳动的脉搏时,血脉使手指透光性变差,红外接收二极管中的暗电流减小,Vi电位上升。
由此看来,所谓脉搏信号的拾取实际上是通过红外接收二极管,在有脉和无脉时暗电流的微弱变化,再经过IClB的放大而得到的。所拾取的信号为2μV左右的电压信号。
3 信号的放大
按人体脉搏在运动后最高跳动次数达240次/分计算来设计低通放大器,它由IC2A和C04等组成,如图2所示。转折频率由R07、C04、R08和C05决定,放大倍数由R08和R06的比值决定。
根据二阶低通滤波器的传递函数,可得
按人的脉搏最高为4 Hz考虑,低频特性是令人满意的。
需要说明的是,以上分析是在忽略C03的条件下做出的,如果考虑C03的话,那么:
由此可见,C03没有影响频率特性的分析,它的作用只是隔直。
二级放大器兼比较器如图3所示。Rpll用以调整系统的放大倍数,C06用以防止放大器自激。采用二级放大,零点漂移不很明显,在0.1 V左右。所以将比较器的阈值电压设计成O.25 V,以确保滤除干扰信号。采用比较器的好处是能有效地克服零点漂移所造成的影响,提高测量的准确性。
波形整形电路如图4所示,IC3A是CD4528型单稳态多谐振荡器,有效脉宽为0.05 s。其宽度由R22和C20决定。IC3B也组成一个单稳态多谐振荡器,脉宽为240ms.D2、Dl和T3等组成一个或非门,只有C,E两点均为低电平时,信号放大器整机输出才是高电平。设计这个电路的目的是为了在输出端输出一个窄脉冲,并且要在由R13和C07决定的时间内任何信号都不会干扰输出。R23和C21充电时间的长短决定了计数脉冲的宽度,一般不希望它太宽。波形整形时序如图5所示。
5 结束语
当该放大器用于集群脉搏测量仪时,一定要注意不同信号通道之间的相互影响,建议把各个放大器的电源分开。此外,测量通道需要一个开关电路,当指夹悬空时,这个开关电路关闭单稳态电路,切断信号通路,防止乱计。
几年的生产实践证明,该放大处理电路稳定可靠。下面是笔者在设计中获得的一些体会。
采用二级放大好于三级放大,个别三级放大电路板的零点漂移大得足以达到满幅,使得测量不准确。每个单级放大器放大倍数最好不要大于30,以免自激振荡。
本信号放大器的高频转折频率由C05、C04、R07、R08和R06决定,C05、C04通常选聚丙烯电容器或聚碳酸酯电容器,R07、R08和R06通常选金属膜五色环电阻。
IClA、R02和R03组成电压跟随器,设计值为2.5 V,精确度由R02和R03决定,最好用金属膜五色环电阻器。
隔直电容器C03的漏电要小,选用钽电解电容器为佳。
IClA和IC1B要选用偏置电流小、输入失调电压小的运算放大器。考虑到性价比,笔者使用了TLC2264和TLC2262。
上一篇:智能手机的耗电特征及APP耗电量测试的两种方法
下一篇:基于ARM920T和Linux的SOHO路由器设计
推荐阅读最新更新时间:2023-10-12 22:53
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 下载有礼:2017年泰克亚太专家大讲堂第一期:大数据与云存储环境下的高速总线技术演进
- 村田RFID知识有奖问答 双重好礼等你来挑战
- 安世半导体&世平集团 高效能&小型化, Nexperia MOSFET的5G解决方案 观看、下载 闯关赢好礼!
- 直播:罗姆DC/DC转换器设计研讨会
- 免费申请试用|福禄克Norma6000功率分析仪
- 《瑞萨电子低功耗MCU实战手册》来了,快去下载赢取好礼!
- 看视频,读资料,参与PI答题有惊喜!
- ADI 连续无创式血压解决方案
- 一起哇:基于国产芯、便携烙铁系统IronOS(FreeRTOS)的智能烙铁
- 4月TI两场EP直播,都挺好:超声气体流量计量创新方案+SimpleLink平台小鲜肉CC13X2/CC26X2专场