开关电源测量的经验总结

最新更新时间:2015-03-27来源: 互联网关键字:开关电源  经验总结 手机看文章 扫描二维码
随时随地手机看文章
电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。

 

1 开关电源简述

 

开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。

 

开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。

 

对于开关变换器来说,只有三种基本拓扑形式,即:

 

● Buck(降压)

● Boost(升压)

● Buck-Boost(升降压)

 

三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。

 

2 容易引发系统失效的关键参数测试

 

以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。

 

2.1 Phase点的jitter

 

 

电源测试
图一

 

 

对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter值应该在1ns以下。

 

2.2 Phase点的塌陷

 

有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。

 

 

电源测试
图二

 

2.3 Shoot through测试

 

测试的目的是看上MOS管导通时,有没有同时把下管打开,从而导致电源直接导通到地而引起短路。如图三所示蓝色曲线(Vgs_Lmos)就是下管在上管导通的同时,被带了起来,如果蓝色曲线的被带起来的尖峰超过了MOS管的Vth要求,同时持续时间(Duration)也超过了datasheet要求,从而就会有同时导通的风险。当然,这是大家最常见到的情况。

 

 

电源测试
图三

 

下面这种情况有非常多的人会忽视,甚至是一些比较有经验的电源测试工程师。下面组图四是下管打开,上管关闭时候的波形(图4-1是示意图,图4-2示实际测试图)。虽然没有被同时带起的情况,但是请注意上下管有交叉的现象,而且交叉点的电平远高于MOS管规定的Vth值,这是个严重的shoot through现象。最直接的后果就是MOS管烧毁!

 

 

电源测试
图4-1

 

电源测试
图4-2

组图四2.4 相位裕量和带宽 (phase margin and bandwidth)

 

相位裕量和带宽是很多公司都没有测试的项目(尤其是规模较小的公司受限于仪器),但是这却是个非常重要的测试项目。电源系统是否稳定,是否能长时间(3年或以上)有效工作,相位裕量和带宽可以在很大程度上说起了决定性的作用。很多公司完全依赖于电源芯片厂家给的参考设计方案里的推荐值,但是跟你的设计往往有不小的差异,这样会有很大的潜在风险。

 

如果系统是一个不稳定的系统,反映在一些电源测试项目里面,会看到以下几个主要问题。

 

● 电源的Noise测试通过,但是电源依然不稳定。表现为功能测试fail。常常有工程师在debug时说我的电源noise已经很小了,加了很多电容了,为啥还是跑不动呢?其实是他的闭环系统本来就不稳定。

 

● Phase点jitter过大。这是比较典型的不稳定现象。

 

● 瞬态响应(Transient response)太大。最笨的办法就是加很多电容,去满足瞬态响应的要求。对于低成本产品,这可是要钱的啊。

 

如果你没有用正确的方法测试出系统的环路增益的波特图,那么你如何下手去调试这些项目让他通过测试呢?只有来来回回不停作实验。然后来来回回跑功能测试。Oh, my god, 浩大的工作量。而且,对于一些低成本的产品,往往用到了铝电解电容,MLCC电容等低成本方案(电感,电阻值基本没有变化)。这些电容的容值会随着时间变化而减少。如MLCC,系统运行在正常温度两年~三年,容值会变到原来的一半。而这一半电容的变化,会对系统的稳定造成很大的影响,这也是为什么很多低价的产品质量不可靠的一个重要原因。那是不是说价格越高,用越多的电容就越好呢,当然不是。这就是为啥要测试phase margin的原因。你需要调试一组合理的值,能够同时覆盖全电容以及半电容的要求。这样同样能做到低价格高品质。

 

根据奈奎斯特定理对系统稳定性要求,规范要求一个闭环系统的相位裕量最少为60度,45~60度可以考虑为最低限额要求。对于带宽,200~500K的开关电源的要求在10%~30%的开关频率。从开关电源的稳定性看带宽越低,电源越容易稳定。从开关电源的动态指标看,带宽越高电源的动态性能越好。

 

下图五为典型的波特图:

 

 

电源测试
图五

 

另外一点非常重要的是,除了PWM开关电源,有很多线性电源(LDO),其补偿网络在芯片外部的,也要做类似的环路增益的波特图测试,从而确保其稳定性。LDO的测试,是绝大多数厂家容易忽略掉的。比如如下图六所示这种电路,很多人会直接测量noise完事。

 

 

电源测试
图六

 

我们有可能会看到的相位裕量不能达到要求。如下图七,只有30度左右。这个时候,只有调试不同的参数,才能得到比较好的结果。从而满足系统稳定性的要求。

 

 

电源测试
图七

 

2.5 电源纹波(ripple)和噪声(noise)

 

电源纹波和噪声,看起来是电源测试里面最简单的项目。但是也有可能对你的测试结果和功能有比较大的影响。

 

首先是纹波,我们测试的时候,只是看是不是符合规范要求,比如30mV等等。有些时候,纹波和系统的PLL是有关系的。如果你的PLL jitter不过 ,可以考虑进一步减小ripple。

 

噪声,有人会问,为啥我的系统noise和他的系统noise基本是一个范围,但是我的系统会跑fail呢?首先我们要排除前面讲的系统稳定性原因,然后,亲,你有没有用示波器做过FFT,看看同样noise在频域上的区别呢?

关键字:开关电源  经验总结 编辑:探路者 引用地址:开关电源测量的经验总结

上一篇:冷知识:慢恢复管在开关电源中的妙用
下一篇:开关电源设计,何时使用BJT?

推荐阅读最新更新时间:2023-10-12 22:54

高效小型化开关电源设计方案
1 引言 开关电源 是利用现代 电力 电子 技术,控制开关晶体管开通和关断的时间比率,维持稳定输出 电压 的一种 电源 。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大 电流 的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中, 正激 和 反激 式有着 电路 拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低
[电源管理]
高效小型化<font color='red'>开关电源</font>设计方案
基于UC3846的全桥开关电源的设计
本文所设计的全桥拓扑的控制电路主要包括控制器、保护电路、电流反馈、电压反馈、驱动电路和辅助电源等。控制电路是开关电源的核心部分,它设计好坏对于开关电源的性能至关重要,电源的很多指标如稳压恒流精度、紋波大小、输入输出特性都与控制电路息息相关,同时由于主电路是全桥拓扑,在对控制电路进行设计时要釆取相应措施防止直通现象发生。下面将对控制电路各部分功能电路进行具体的设计和介绍。 电流控制型芯片简介 采用UC3846作为控制芯片。该芯片采用大电流图腾柱式双端输出,输出峰值电流可达500mA,能直接驱动场效应管,内置精密带隙可调基准电压,高频振荡器,误差放大器,差动电流检测放大器,欠电压锁定电路以及开机软启动电路,具有自动关断功能。其
[电源管理]
示波器在开关电源分析中的应用
电源是所有电子产品不可或缺的组成部分,电源分为 开关电源 、 线性电源 等类型,其中开关电源已经成为数字计算、网络通信系统中电源的主流架构。开关电源的好坏关系到产品的整体性能。因此,在研发和生产测试中对于电源的精确分析显得尤为重要。SIGLENT推出的SDS2000超级荧光 示波器 配备强大的电源分析模块,支持绝大部分电源性能指标的精确测试测量。下面将通过分析电源板输入模块,给大家详细介绍SDS2000的电源分析功能。 以电源演示版STBX为例,其物理视图如图1所示: 图1 STBX STBX电路原理图如图2所示:  图2 原理图 在进行操作之前,首先应检查示波器、电源演示板是否运行良好,在保证示波器、电源演示板及探头等所
[电源管理]
示波器在<font color='red'>开关电源</font>分析中的应用
降压开关电源设计过程中控制技术的选择
降压开关电源的设计过程非常简单,从最初的规格说明出发,为设计选择合适的“核心电路”,再配置一些外部元件,最 后仿真和验证以完成设计方案。但是目前有很多种控制技术,如何做出合适的决定很具挑战性。为了选择更合适的控制器或调节器,必须进行深入的研究。   经典的PWM控制技术   最常见的控制器采用经典的脉冲宽度调制 (PWM) 技术,利用内部时钟引导每个工作周期的开始,使主MOSFET导通。通过比较控制电压 (Vc) 和锯齿波电压幅度(Vp),能够对关闭时间进行定时,如图1所示。      图1 电压模式降压稳压器的基本架构   锯齿波有三种不同的生成方式,与之对应的是电压模式、电压型前馈控制和电流模
[电源管理]
降压<font color='red'>开关电源</font>设计过程中控制技术的选择
详细解析开关电源拓扑结构优缺点
  为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和 平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。   因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:   Sv = Up/Ua —— 电压脉动系数 (1-84)   Si = Im/Ia —— 电流脉动系数 (1-85)   Kv =Ud/Ua —— 电压波形系数 (1-86)   Ki = Id/Ia —— 电流波形系数 (1-87)   上面4式中,Sv、Si、Kv、Ki分
[电源管理]
电流控制型脉宽调制器UC3842在开关电源中的应用
引言 开关稳压电源被誉为“新型高效节能电源”,它代表着稳压电源的发展方向。由于内部器件工作在高频开关状态,因此本身消耗的能量极低,电源效率可以达到80%以上,比串连调整线性稳压电源的效率提高近一倍。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关稳压电源已得到越来越广泛的应用。本文首先概述开关稳压电源的基本工作原理,接着介绍电流型脉宽调制器UC3842芯片,着重论述了UC3842在开关稳压电源中的应用,并以一个实际应用实例分析了电源电路的构成和参数计算。 开关电源的基本工作原理 相对于线性稳压电源功耗较大的缺点,开关电源的效率可达90%以上,而且造价低、体积小。开关电源的工作原理如图1
[电源管理]
电流控制型脉宽调制器UC3842在<font color='red'>开关电源</font>中的应用
LED恒流驱动芯片开关电源管理芯片PN8326介绍及封装
PN8326 LED恒流驱动芯片开关电源管理ic芯片应用方案 PN8326产品描述: PN8326包括高精度的恒流原边控制器及功率MOSFET,,专用于高可靠、隔离双绕组、极精简外围元器件的中小功率LED照明。该芯片工作在原边调整模式,可省略光耦、TL431;采用了快速DMOS自供电的专利技术可节省变压器辅助绕组和高压启动电阻。该芯片提供了极为全面的自恢复保护功能,包含逐周期过流保护、开环保护、过温保护、Rcs开/短路保护和LED开/短路保护等。内置高压启动电路和极低的芯片功耗有助于获取较高的工作效率。在恒流模式下,电流和输出功率可通过CS脚的Rs电阻进行调节。 PN8326产品特点: ■ 内置700V高雪崩能力的
[电源管理]
多路输出开关电源的设计及应用原则
1引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,%26;#177;15V或%26;#177;12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,%26;#177;15V,%26;#177;12V,-5V,%26;#177;9V,+18V,+24V、+27V、%26;#177;60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved