开关电源测量的经验总结

最新更新时间:2015-03-29来源: 互联网关键字:开关电源  测量 手机看文章 扫描二维码
随时随地手机看文章
电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。

1 开关电源简述

开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。

开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。

对于开关变换器来说,只有三种基本拓扑形式,即:

● Buck(降压)

● Boost(升压)

● Buck-Boost(升降压)

三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。

2 容易引发系统失效的关键参数测试

以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。

2.1 Phase点的jitter

 

 

对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter值应该在1ns以下。

2.2 Phase点的塌陷

有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。

 

 

2.3 Shoot through测试

测试的目的是看上MOS管导通时,有没有同时把下管打开,从而导致电源直接导通到地而引起短路。如图三所示蓝色曲线(Vgs_Lmos)就是下管在上管导通的同时,被带了起来,如果蓝色曲线的被带起来的尖峰超过了MOS管的Vth要求,同时持续时间(Duration)也超过了datasheet要求,从而就会有同时导通的风险。当然,这是大家最常见到的情况。

 

 

下面这种情况有非常多的人会忽视,甚至是一些比较有经验的电源测试工程师。下面组图四是下管打开,上管关闭时候的波形(图4-1是示意图,图4-2示实际测试图)。虽然没有被同时带起的情况,但是请注意上下管有交叉的现象,而且交叉点的电平远高于MOS管规定的Vth值,这是个严重的shoot through现象。最直接的后果就是MOS管烧毁!

 

 

2.4 相位裕量和带宽 (phase margin and bandwidth)

相位裕量和带宽是很多公司都没有测试的项目(尤其是规模较小的公司受限于仪器),但是这却是个非常重要的测试项目。电源系统是否稳定,是否能长时间(3年或以上)有效工作,相位裕量和带宽可以在很大程度上说起了决定性的作用。很多公司完全依赖于电源芯片厂家给的参考设计方案里的推荐值,但是跟你的设计往往有不小的差异,这样会有很大的潜在风险。

如果系统是一个不稳定的系统,反映在一些电源测试项目里面,会看到以下几个主要问题。

● 电源的Noise测试通过,但是电源依然不稳定。表现为功能测试fail。常常有工程师在debug时说我的电源noise已经很小了,加了很多电容了,为啥还是跑不动呢?其实是他的闭环系统本来就不稳定。

● Phase点jitter过大。这是比较典型的不稳定现象。

● 瞬态响应(Transient response)太大。最笨的办法就是加很多电容,去满足瞬态响应的要求。对于低成本产品,这可是要钱的啊。

如果你没有用正确的方法测试出系统的环路增益的波特图,那么你如何下手去调试这些项目让他通过测试呢?只有来来回回不停作实验。然后来来回回跑功能测试。Oh, my god, 浩大的工作量。而且,对于一些低成本的产品,往往用到了铝电解电容,MLCC电容等低成本方案(电感,电阻值基本没有变化)。这些电容的容值会随着时间变化而减少。如MLCC,系统运行在正常温度两年~三年,容值会变到原来的一半。而这一半电容的变化,会对系统的稳定造成很大的影响,这也是为什么很多低价的产品质量不可靠的一个重要原因。那是不是说价格越高,用越多的电容就越好呢,当然不是。这就是为啥要测试phase margin的原因。你需要调试一组合理的值,能够同时覆盖全电容以及半电容的要求。这样同样能做到低价格高品质。

根据奈奎斯特定理对系统稳定性要求,规范要求一个闭环系统的相位裕量最少为60度,45~60度可以考虑为最低限额要求。对于带宽,200~500K的开关电源的要求在10%~30%的开关频率。从开关电源的稳定性看带宽越低,电源越容易稳定。从开关电源的动态指标看,带宽越高电源的动态性能越好。

下图五为典型的波特图:

 

 

另外一点非常重要的是,除了PWM开关电源,有很多线性电源(LDO),其补偿网络在芯片外部的,也要做类似的环路增益的波特图测试,从而确保其稳定性。LDO的测试,是绝大多数厂家容易忽略掉的。比如如下图六所示这种电路,很多人会直接测量noise完事。

 

 

我们有可能会看到的相位裕量不能达到要求。如下图七,只有30度左右。这个时候,只有调试不同的参数,才能得到比较好的结果。从而满足系统稳定性的要求。

 

 

2.5 电源纹波(ripple)和噪声(noise)

电源纹波和噪声,看起来是电源测试里面最简单的项目。但是也有可能对你的测试结果和功能有比较大的影响。

首先是纹波,我们测试的时候,只是看是不是符合规范要求,比如30mV等等。有些时候,纹波和系统的PLL是有关系的。如果你的PLL jitter不过 ,可以考虑进一步减小ripple。

噪声,有人会问,为啥我的系统noise和他的系统noise基本是一个范围,但是我的系统会跑fail呢?首先我们要排除前面讲的系统稳定性原因,然后,亲,你有没有用示波器做过FFT,看看同样noise在频域上的区别呢?

关键字:开关电源  测量 编辑:探路者 引用地址:开关电源测量的经验总结

上一篇:DC-DC转换器和LDO驱动ADC电源输入
下一篇:采用高稳定性隔离误差放大器的反激式电源

推荐阅读最新更新时间:2023-10-12 22:54

便携式超声波流量计用于现场管道流量测量的分析
现在盛行的便携式超声流量计使用方便灵活,一般适用于测量大口径管道的流量,然而现场应用的实际测量精度,常因工作疏忽,换能器安装距离及流通面积等测量的误差而造成精度下降。不正确的安装甚至会使得仪表完全不能工作。因此,仪表现场的安装与调试对于测量是非常重要环节,本文就现场使用超声波流量计所遇到的问题进行分析,总结出管道流量精确测量的方法。      一、超声波流量计的原理       超声流量计 利用超声波在流动的流体中传播时,可以载上流体流速信息的特性,通过接收和处理穿过流体的超声波信息就可以检测出流体的速度,从而换算成流量。它具有下列主要特点:①解决了大管径、大流量及各类明渠、暗渠的测量困难的问题;②对介质几乎无要求;
[测试测量]
便携式超声波流量计用于现场管道流量<font color='red'>测量</font>的分析
三坐标测量机的组成及工作原理
(一)按CMM的技术水平分类 1.数字显示及打印型;?这类CMM主要用于几何尺寸测量,可显示并打印出测得点的坐标数据,但要获得所需的几何尺寸形位误差,还需进行人工运算,其技术水平较低,目前已基本被陶汰。 2.带有计算机进行数据处理型 这类CMM技术水平略高,目前应用较多。其测量仍为手动或机动,但用计算机处理测量数据,可完成诸如工件安装倾斜的自动校正计算、坐标变换、孔心距计算、偏差值计算等数据处理工作。 3.计算机数字控制型? 这类CMM技术水平较高,可像数控机床一样,按照编制好的程序自动测量。 (二)按CMM的测量范围分类 1.小型 三坐标测量机 这类CMM
[测试测量]
三坐标<font color='red'>测量</font>机的组成及工作原理
基于机器人的红外线距离测量
超声波并不是测量机器人与物体间距离的唯一方法,也可以利用红外线。和超声波测量不同,红外线距离传感器不会去探测线光束的传播时间。因为对于我们感兴趣的距离,传输时间为10—15—10-12秒数量级。只有那些极为昂贵的电路才能应付这样的速度。红外线系统采用所谓视差技术。即测量已知光源和它的反射光束之间的反射角。它的工作方式是:红外线光束照射在一个场景上。光束经过传感器前的物体反射后。再照射到传感器。物体越接近,由于视差引起的角度变化就越大。反射光束照在一个非常小的线性光检测器矩阵上。光检测器矩阵连接分析物体距离的电路。这个电路可以提供数字或模拟输出。在这里我们将都做介绍。 最早制造供机器人使用的红外线测距传感器的厂家是日
[工业控制]
基于机器人的红外线距离<font color='red'>测量</font>
定量测量多通道串行数据系统中的串扰引起的抖动(一)
简介 多通道串行数据链路容易受到串扰的影响,这些串扰可能来自于相邻通道,也可能是外部的干扰源(Aggressor),其结果是增加了受干扰通道(Victim Lanes)的抖动和噪声,最终带来了系统误码的增加。使用TDR或VNA可以测量出通道之间的耦合,但是他们不能直接测量出串扰影响带来的具体抖动值。本文将讨论的NQ-Scale测量方法能准确分离出串扰贡献的抖动大小并且介绍使用不同方法进行实际测量的案例。 概述 串扰的影响引起了Rj和Dj的增加,但是影响的程度会有非常大的差别,这取决于相邻通道传输的数据的特性。利用数字示波器和其它类型仪器的抖动分析技术可以提供详细的抖动分解结果,包括周期性抖动Pj,数
[测试测量]
定量<font color='red'>测量</font>多通道串行数据系统中的串扰引起的抖动(一)
一种低成本无变压器开关电源
本文介绍一种低成本无变压器开关型电源。该开关型电源的输出直流电压V0=12V,最大负载电流I=100mA。 电路如图所示。220V的交流电压经VD2半波整流和电容C2滤波,为功率开关管MOSFET(VT1)的栅极和开关晶体管VT2的集电极提供直流工作电压。R1、RP与电容C1组成RC移相网络。VD3是为电容C1对地充、放电而设置的。功率开关MOSFET的导通与关断,受小信号晶体管VT2的控制。在交流电压VAc的正半周,通过R1、RP使VT2导通。在VT2导通期间,VT1关断。反之,在VT2截止时,VT1饱和导通。二极管VD1的作用是确保T1只在Vac的正半周的初始阶段导通,形成针状脉冲电流对大容量滤波电容C3充电。RC移相网络
[电源管理]
一种低成本无变压器<font color='red'>开关电源</font>
基于MEMS加速度计实现动态倾角测量系统的设计
引 言 基于MEMS加速度计的倾角测量模块具有体积小、质量轻、成本低、抗冲击、可靠性高等优点。对有加速度干扰下的倾角测量存在较大误差,本文围绕这一误差产生的来源和去除这种误差的方法进行了研究。 旋转状态下的倾角测量属于有加速度干扰的动态倾斜角度测量的一种。在旋转参考系下,质量为m的物体受到指向旋转中心的连接物的牵引力,但却相对于该参考系静止,没有加速度,不符合牛顿第一定律。所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律形式不变,在质点静止于此参考系的情况下,应引入离心惯性力,该力与旋转轴垂直。该状态下影响被测对象倾斜角度正确输出的加速度正是该力造成的。为了抵消这种在旋转状态下由于加速度引起的
[测试测量]
基于MEMS加速度计实现动态倾角<font color='red'>测量</font>系统的设计
石英晶体谐振频率测量系统
引言 石英晶振(quartz crystal unit,XTAL)简称晶振,是利用石英晶体的压电效应产生高精度振荡频率的一种被动电子元器件,广泛应用于现今的电子产品中。但在晶振的实际生产过程中,将研磨到设计厚度的大片石英晶体切割成小片后,每片石英晶体的尺寸有着细微差别,导致不同晶振小片之间共振频率存在着差异。晶振在切割后必须先进行实际共振频率的测定和分拣,以便后续加工。生产率和成本对测量精度和分拣速度都提出了很高的要求。现代化的专用测量-分拣设备要求在1 s以内完成晶片的抓取、测量与分类投放工作,其中机械臂的抓取、投放等机械运动要耗费大部分时间,故留给晶振片参数测量的时间要求远小于机械运动时间,即在100 ms以内。 国内
[单片机]
石英晶体谐振频率<font color='red'>测量</font>系统
SEPTNY256型单片机开关电源及其应用
1 TNY256的性能特点   ·内置自动重启电路,不需外接元件,一旦发生输出短路或控制环开路故障,可将占空比降低以保护芯片。   ·在输入直流高压电路中,不需要使用瞬态电压抑制器构成的钳位保护电路,仅用简单的RC吸收回路即可衰减视频噪声。   ·输入欠压检测电路仅需外接1只电阻,目的是在上电时将片内的功率MOSFET关断,直到直流输入电压VI达到欠压保护门限电压(100V)为止;正常工作后若VI突然降低,对芯片也能起到保护作用。   ·开关频率抖动可降低电磁辐射。   ·输入电压范围宽(85~265VAC或120~375VDC)且交、直流两用。效率高,265VAC输入时的空载功耗低于100mW。
[应用]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved