随着电子科技的不断发展,越来越多的电子设备进入我们的生活,要想让这些电子设备为我们服务,就离不开电源的驱动。所以设计一个稳定可靠,抗扰能力较高的电源至关重要。我们在实际应用场合中,经常会出现系统中各个模块供电不统一,或者供电电源的电压时常变化的(比如汽车中的电池电压受温度及发动机影响变化),此时需要一个稳压电源将电压固定在某个输出电压,所以需要一个升降压电路来适应输入电压的上升与跌落。
在实际应用中,比如我们用的越来越多的单节锂电池供电设备。锂电池充满电时的终止充电电压一般是4.2V,电池的终止放电电压为2.75V~3.0V。低于2.5V继续放电称为过放,过放对电池会有损害。所以锂电池供电电路一般设计为3.0V~4.2V输入,输出3.3V供给MCU。此设计就需要用到升降压电路,还有很多应用也有类似需求,我们现在就来扒一扒升降压电源的设计方案。
一、集成芯片升降压应用(共地应用)
图1 专用升降压芯片应用
图1为MPS集成功率管的MP2155GQ升降压方案,内部自动切换升降压模式。输入电压为2V-5.5V,输出3.3V/2A。此应用非常适合单节锂电池供电设备,外围器件极少,只需要外加一个电感即可实现升降压功能。尤其适合小体积应用。
二、Buck-Boost拓扑应用(非共地应用)
Buck-Boost电路从命名就知道可以实现升降压功能,目前MPS的DC-DC电源芯片都支持Buck-Boost的设计结构,可以根据不同输出电流选择合适型号。
图2 Buck-Boost拓扑原理
图3是采用MP2359DT设计的-15V电源电路,当然也可以实现升降压功能,MP2359DT是采用SOT23-6的封装,整个电路占用PCB面积较小。
图3 MP2359升降压电路
三、电源模块升降压应用
上述应用都是非隔离应用,我们还有一种大功率隔离应用。此方案主要考虑在主控板上面的供电应用。例如:输入9-36V输出,输出12V/2.5A的应用,此时可以选用隔离电源模块实现。具体型号:E2412UHBD-30W
图4 隔离电源模块
上述三种升降压方案涵盖了大部分的应用,根据实际产品的供电需求来设计完善供电电路。
关键字:升降压 电源设计
编辑:杜红卫 引用地址:升降压电源设计的种类
推荐阅读最新更新时间:2023-10-12 22:56
用PWM直流控制器简化开关电源设计
尽 管 PWM 直流/直流开关电源转换器的结构很简单,但要用它做出实用的电源,还需要增加各种功能,如起动偏压、软起动、开关驱动、稳压、短路保护、过压保护、过热保护等。今天,一只小型直流/直流 PWM 控制器 IC 就可以实现上述的绝大多数功能。 但是,在电信和其它高电压应用(即,输入电压大于 15V)中经常存在直流/直流转换器的起动问题。控制器的运行需要一个偏置电压,以产生栅极驱动脉冲和其它所需信号。但在起动时,唯一可用的只有输入电压,如果输入电压大于 15V,一般情况下不能用作偏置和栅极驱动电压。因此,需要将输入电压降至 15V 以下,才能使电源起动。一旦电压正常运行,就可以用输出电压或者变压器、电感绕组中的电压,为 IC
[嵌入式]
基于TPS759XX多片信号处理系统的电源设计
在大型的通信信号处理系统和雷达信号处理系统中,随着器件的规模不断扩大,对电源的性能和功率及其外围滤波电路的要求也越来越高,电源设计对于一个系统的能否正常工作起着至关重要的作用。
在实际应用中,通常利用线性电源或者开关电源给整个系统供电,而对于每一块独立的电路板上的每一个集成芯片则需要DC-DC电压调节器分别调节后供电。其中线性调节器的输入电流接近于输出电流,它的效率(输出功率/输入功率)接近于输出/输入电压比。因此,压差是一个非常重要的性能,因为更低的压差意味着更高的效率。LDO(LowDropout)线性电压调节器的低压差特性有利于改善电路的总体效率,这里所介绍的TPS759XX就是LDO线性电压调节器。
2 TPS75
[电源管理]
基于PWM控制器芯片的AC/DC电源设计
目前,在100W以下电源方案中,一般都使用脉冲宽度调制(PWM)控制芯片来实现PWM的调制,开关控制模式相对直流工作模式有很高的工作效率,使用反激离线工作模式,提高了系统工作的安全性,非常适合应用在便携式充电设备及电源适配器,比如,手机充电器,电源适配器等,因此,AC/DC PWM开关电源芯片在市场上的需求量非常大。不过传统的AC/DC电源方案都是使用变压器次级线圈反馈模式(SSR),变压器次级反馈工作模式都需要低压端的恒压-恒流控制芯片协助完成电压的转换和实现恒流,此类应用方案增加了系统应用复杂程度,同时还增加系统方案的设计成本,本文要介绍的AC/DC电源控制芯片是思旺电子的SE3910,这是一款变压器原边线圈反馈模式(PSR)
[电源管理]
应用处理器专用电源设计
本文详细说明了 TI 推出的 TPS65024x 电源产品系列之间的不同之处,此系列电源产品是专门为 PDA、智能电话以及导航系统的应用处理器而设计的。
在为智能电话开发一款集成电路时,一个小的解决方案尺寸是最重要的设计参数。其他重要的参数包括高效率、灵活性以及外部组件的数量。但是,在导航系统中,由于较大尺寸的显示屏以及外形尺寸,因此与纯手持终端应用相比,其对空间的要求就显得不那么关键了。根据设计,由于手持终端设备、导航系统每次只能运行数个小时,因此将他们与汽车的仪表板相连,并由一个连接至汽车蓄电池的 12 V 适配器来供电是极为常见的。该适配器通常包括一个为导航系统的输入提供 5V DC 电压的预调节器。这样就可以使用一个专用
[电源管理]
基于逆变电源设计的两种双环瞬时反馈控制方式
电流型双环控制技术在DC/DC变换器中广泛应用,较单电压环控制可以获得更优良的动态和静态性能 。其基本思路是以外环电压调节器的输出作为内环电流给定,检测电感(或开关)电流与之比较,再由比较器的输出控制功率开关,使电感和功率开关的峰值电流直接跟随电压调节器的输出而变化。如此构成的电流、电压双闭环变换器系统瞬态性能好、稳态精度高,特别是具有内在的对功率开关电流的限流能力。逆变器(DC/AC变换器)由于交流输出,其控制较DC /DC变换器复杂得多,早期采用开关点预置的开环控制方式 ,近年来瞬时反馈控制方式被广泛研究,多种各具特色的实现方案被提出,其中三态DPM(离散脉冲调制)电流滞环跟踪控制方式性能优良,易于实现。本文将电流型PWM
[电源管理]
一种大功率LED驱动电源设计方
据统计,有高达20%至22%的电能用于照明。提高照明应用的能源使用效率乃至进一步降低其能源消耗,有助于减少二氧化碳排放,造就更加绿色环保的世界。因此,高能效照明正在成为业界竞逐的一个焦点。
大功率区域照明存在不少挑战,如灯具可能难以接近、光源发生故障时可能带来安全问题、户外存在多种极端环境条件等。此外,不容忽视的是,应用于大功率区域照明的现有光源(如金属卤素灯、高压钠灯、线性荧光灯及紧凑型荧光灯)存在着不少局限,如高压钠灯的显色性差(CRI约为22),金属卤素灯的典型灯具损耗较高(40%)且其从启动到发光至完整亮度经历的时间可能长达10分钟,线性荧光灯的冷温度性能差,紧凑型荧光灯的启动速度也较慢。
另一方面
[电源管理]
基于MC32P21单片机的移动电源设计
移动电源是一种集供电和充电功能于一体的便携式充电器,可以给手机等数码设备随时随地充电或待机供电。一般由锂电芯或者干电池作为储电单元。区别于产品内部配置的电池,也叫外挂电池。一般配备多种电源转接头, 通常具有大容量、多用途、体积小、寿命长和安全可靠等特点,是可随时随地为智能手机、平板电脑、数码相机、MP3、MP4等多种数码产品供电或待机充电的功能产品。 移动电源可以通过USB电缆线使用在任何符合USB国际标准的设备,其具有短路、过充过放、恒流恒压等保护措施,还有高性能电源管理技术。 移动电源方案,根据是否可以编程,分为硬件移动电源和软件移动电源两种技术路线。硬件移动电源方案主要存在的问题是:1.发热严重,采用非同步整流模式,温度高后
[电源管理]
简化汽车显示器的系统电源设计
在汽车显示器方面,汽车制造商开始在车厢内安装更多屏幕,更大、更清晰。高级仪表盘、平视显示器、信息娱乐系统、中央显示器、后座娱乐系统、智能后视镜等功能的显示器可生动地显示周围环境、汽车控制和信息娱乐选项。 更重要的是,随着车辆配备更多的自主功能,显示器将继续在安全性和便利性方面发挥关键作用。高级车辆可能拥有多达 10 个显示器。在接下来的几年里,我们可能会看到屏幕大于34英寸的车辆变得普遍,分辨率为4K(最终是8K)。然而,为每辆车添加更多屏幕涉及复杂的平衡行为,因为这些屏幕的电源电路与许多其他电子系统竞争车内有限的空间。需要更小和简化的PCB,因为这将减少物料清单(BOM),从而减少相关成本。 有效的汽车显示器必须解决以下
[嵌入式]