作者:Selcuk Ilke
简介
HMC1118是一款硅制单刀双掷(SPDT)开关,额定工作频率为9 kHz至13 GHz,采用4 mm × 4 mm、16引脚引线框芯片级封装(LFCSP)。该宽带开关非常适合测试测量设备和高性能无线应用。关键特性包括:
•低插入损耗:0.68 dB(8 GHz时)
•高隔离度:48 dB(8 GHz时)
•高输入P1 dB:37 dBm
•高输入IP3:62 dBm
•快速建立时间(最终RF输出内0.05 dB):7.5 μs
HMC1118功能框图如图1所示。HMC1118标称需要双电源电压,VDD = +3.3 V且VSS = −2.5 V,器件特性就是在这些电压下测定的。采用双电源供电时,请参阅HMC1118数据手册和本应用笔记以了解完整特性。
HMC1118也可以采用VDD = 3.3 V的单一正电源供电,此时VSS引脚接地。单电源下大信号特性会受影响,但对于很多没有负电源电压可用的应用,器件仍能提供相当不错的性能。本应用笔记主要研究HMC1118的操作,并且比较该器件采用单电源和双电源供电的性能。
图1.HMC1118功能框图
HMC1118开关操作
HMC1118采用熟悉的吸收式SPDT开关拓扑,两条完全相同的RF路径上有一个串联场效应晶体管(FET)和一个并联FET,集成一个驱动器用于实现内部逻辑功能,如图2所示。
图2.HMC1118简化电路图
HMC1118为其RF内核提供两种工作模式,如表1所示。在模式1下,RF1至RFC路径处于导通状态,RF2至RFC处于隔离状态;在模式2下则相反。
在插入损耗路径中,串联FET开启,并联FET关断。在隔离路径中则相反,串联FET关断,并联FET开启。因此,各RF路径上的串联和并联FET需要互补控制电压。HMC1118芯片上集成了一个驱动器,用以产生A和B互补控制电压,如图2所示。因此,开关可以通过施加于VCTRL引脚的单个CMOS逻辑电压来控制,LS引脚可以接地或接VDD(参见表2)。
表1.开关模式
表2.控制电压
开关FET用作一个三端口电压控制器件,根据施加于栅极端口的控制电压,漏极端口和源极端口之间的RF信号导通通道闭合(导通状态)或关闭(关断状态)。HMC1118采用N沟道增强模式FET,其典型夹断电压为0.3 V,即栅极和漏-源通道之间为导通FET而需要的电位差。各FET的漏极和源极端口处于直流地电位,故而RF端口上无需隔直电容(其会限制低频操作)。因此,大于(或小于)0.3 V的绝对栅极电压会开启(或关断)FET。
FET一般偏置到极端电压+3.3 V和−2.5 V,以建立一定的电压来开启和关闭FET,并提供最优RF性能。由于HMC1118没有集成稳压器和负电压发生器,所以需要将两个经调节的外部电源电压施加于VDD和VSS引脚,以产生FET器件必需的偏置电压。虽然VDD和VSS的典型值分别为+3.3 V和−2.5 V,但用户可以灵活地仅使用单一正电源VDD = 3.3 V来操作器件,此时VSS引脚接至0 V。然而,这会导致某些参数的电气性能下降,参见“单电源和双电源供电的性能比较”部分所述。
单电源和双电源供电的性能比较
本节比较HMC1118在两种供电方式下的性能:一种是VDD = +3.3 V和VSS = −2.5 V双电源,另一种是VDD = 3.3 V单电源,VSS引脚接0 V。图3所示为用于评估HMC1118在单电源和双电源供电时的性能的评估板原理图。
图3.HMC1118评估板原理图
小信号性能
HMC1118针对50 Ω系统提供最优小信号性能。当VSS从−2.5 V变为0 V时,对于RF小输入信号,其足以使FET保持关断状态,HMC1118的小信号RF性能不会下降。整个工作频率范围内的回波损耗、插入损耗和隔离度都得到保持,如图4、图5和图6所示。
图4.不同VSS下回波损耗与频率的关系
图5.不同VSS下插入损耗与频率的关系
图6.不同VSS下隔离度与频率的关系
大信号性能
HMC1118的串联臂和并联臂上均有若干串联FET,用以承受高于单个FET击穿电压的功率水平。通过将电压均匀分配在这些FET上,开关臂得以优化并实现出色的线性度。
高RF功率可能调制栅极电压和漏源通道电阻。这会引起交调失真和输入信号的压缩或削波。FET偏置到夹断电平附近会提高这种效应。
因此,当VSS从−2.5 V变为0 V时,HMC1118的功率压缩和线性度会下降,如图7和图8所示。
图7.不同VSS下输入压缩点与频率的关系
图8.不同VSS下输入IP3与频率的关系
开关时间
高功率处理和快速开关时间之间存在此消彼长的关系:栅极电阻越大,低频时的功率处理能力越高,但开关时间会变慢。HMC1118优化了栅极电阻值,从而在低频范围提供高功率处理能力,同时又有足够快的开关时间。
当VSS从−2.5 V变为0 V时,HMC1118的开关时间性能下降,如图9所示。
图9.不同VSS下的开关时间
功率处理
当VSS从−2.5 V变为0 V时,HMC1118保持相同的热特性,但在较低输入功率水平时会进入功率压缩状态。因通道温度升高过快,HMC1118 RF端口的绝对和推荐最大输入功率额定值会下降。
表3.最大RF输入功率(PIN, MAX)额定值1
VCTRL = 0 V或3.3 V,TCASE = 85°C,f = 2 GHz。
结语
HMC1118采用VDD = 3.3 V的单一正电源供电时,功率处理性能(PIN、MAX、P1dB和IP3)会下降,开关速度(开启和关断时间及上升和下降时间)会变慢,但小信号特性(插入损耗、隔离度和回波损耗)不变。如果降低的功率处理和开关速度性能对特定应用是合适的,那么HMC1118便可这样使用,即让VSS引脚接地。
上一篇:TI推出首款采用集成降压/升压转换器的单电源供电4-20mA DAC
下一篇:爱立信开创性PKB4413DA高级总线转换器提供业界领先效率
推荐阅读最新更新时间:2023-10-12 22:57
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC