使用集成 GaN 解决方案提高功率密度

发布者:EE小广播最新更新时间:2022-09-14 来源: EEWORLD关键字:GaN  功率密度 手机看文章 扫描二维码
随时随地手机看文章

氮化镓 (GaN) 是电力电子行业的热门话题,因为它可以使得 80Plus 钛电源、3.8kW/L 电动汽车 (EV) 车载充电器和 EV 充电站等设计得以实现。在许多应用中, GaN 能够提高功率密度和效率,因此它取代了传统的硅金属氧化物半导体场效应晶体管 (MOSFET)。但由于 GaN 的电气特性和它所能实现的性能,使用 GaN 进行设计面临与硅不同的一系列挑战。


不同类型的 GaN FET 具有不同的器件结构。GaN FET 包括耗尽型 (d-mode)、增强型 (e-mode)、共源共栅型 (cascode) 等三种类型,每种类型都具有各自的栅极驱动器和系统要求。本文将介绍使用不同类型的 GaN FET 进行设计来提高系统设计的功率密度所需考虑的最重要因素。同时还将分析集成栅极驱动器和电压供应调节等功能可以如何显著简化整体设计。


GaN FET 剖析


每种 GaN 电源开关都需要配备合适的栅极驱动器,否则在工作台测试时可能发生事故。GaN 器件具有超级敏感的栅极,因为它们不是传统意义上的 MOSFET,而是高电子迁移率晶体管 (HEMT)。HEMT 的截面如图 1 所示,类似于 MOSFET,但电流不会流过整个衬底或缓冲层,而是流过一个二维的电子气层。

 

image.png

图 1:GaN FET 横向结构截面图


不当的栅极控制可能会导致 GaN FET 的绝缘层、势垒或其他结构性部分被击穿。这不仅会造成 GaN FET 在对应系统条件下无法工作,还可能会对器件本身造成永久性损坏。这种敏感度取决于不同类型的 GaN 器件及其广泛需求。HEMT 也不具有传统掺杂的 FET 结构。该结构会形成 PN 结,进而产生体二极管。这意味着内部二极管不会在运行过程中被击穿或产生反向恢复等不必要行为。


栅极驱动器和偏置电源注意事项


增强型 GaN FET 在外观上与增强型硅 FET 非常类似,这点您可能已经有所体会。在栅极阈值电压为 6V 的工作条件下,1.5V 至 1.8V 的正电压为 FET 开启电压。但是大多增强型 GaN 器件的最大栅极阈值电压为 7V,一旦超过很可能会造成永久性损坏。


由于传统的硅栅极驱动器在基于 GaN 的设计中可能无法提供适当的电压调节功能或无法解决高共模瞬态抗扰度问题,许多设计人员会选择TI 专为 GaN FET 设计的 LMG1210-Q1 等栅极驱动器。无论电源电压如何,该器件都可提供 5V 的栅极驱动电压。传统的栅极驱动器需要非常严格地调节栅极驱动器的偏置电源,以防GaN FET 过载。相比于增强型 GaN FET,共源共栅型 GaN FET 是一种牺牲易用性的折衷方案,结构如图 2 所示。

 

image.png

图 2:增强型与共源共栅耗尽型 GaN FET 示意图


GaN FET 是一种耗尽型器件,意味着该器件在通常情况下导通、关断时需要在栅极施加负的阈值电压。这对于电源开关来说是一个很大的问题,为此大多数制造商在 GaN FET 封装中串接了一个 30V 硅 FET。GaN FET 的栅极与硅 FET 的源极相连,在硅 FET 的栅极施加开启与关闭栅极脉冲。


封装内串接硅 FET 的主要优势在于,使用传统的隔离式栅极驱动器(如 UCC5350-Q1)驱动硅 FET 可以解决许多栅极驱动器和偏置电源问题。共源共栅型 GaN FET 的主要缺点是 FET 的输出电容较高,并且由于体二极管的存在,易受反向恢复的影响。硅 FET 的输出电容加上 GaN FET 的输出电容,使 FET 的输出电容增加了 20%,这意味着与其他 GaN 解决方案相比,开关损耗增加了 20% 以上。此外,在反向导通过程中,硅 FET 的体二极管会导通电流,并在电压极性翻转时进行反向恢复。


为防止硅 FET 的雪崩击穿,共源共栅型 GaN FET 需以 70V/ns(其他 GaN 解决方案为 150V/ns)的压摆率工作,这增加了开关交叠损耗。尽管共源共栅型 GaN FET 可以简化设计,但会限制可实现的性能。


通过集成实现更简单的解决方案


将栅极驱动器和内置偏置电源调节与耗尽型 GaN FET 进行集成,可以解决增强型和共源共栅型 GaN FET 设计上的许多难题。例如,LMG3522R030-Q1 是一款 650V 30mΩ 的 GaN 器件,集成了栅极驱动器和电源管理功能,可实现更高的功率密度和效率,同时降低相关风险和工程工作量。耗尽型 GaN FET 需要在封装内串接硅 FET。但与共源共栅型 GaN FET 的主要区别在于,所集成的栅极驱动器可以直接驱动 GaN FET 的栅极,而硅 FET 则在上电时保持常闭状态启动开关。这种直接驱动可以解决共源共栅型 GaN FET 的主要问题,例如较高的输出电容、反向恢复敏感性和串联硅 FET 的雪崩击穿。


LMG3522R030-Q1 中集成的栅极驱动器可实现较低的开关交叠损耗,使 GaN FET 能够在高达 2.2MHz 的开关频率下工作,并消除 GaN FET 使用错误栅极驱动器的风险。图 3 展示了使用了集成 LMG3522R030-Q1 GaN FET 的半桥配置。

 

image.png

图 3:使用 UCC25800-Q1 变压器驱动器和两个 LMG3522R030-Q1 GaN FET 的简化 GaN 半桥配置


集成驱动器可减小解决方案尺寸,实现功率密集型系统。同时,集成降压/升压转换器意味着 LMG3522R030-Q1 可在 9V 至 18V 的非稳压电源下工作,从而显著降低对偏置电源的要求。为实现紧凑且经济的系统解决方案,可以将 LMG3522R030-Q1 与 UCC25800-Q1 等超低电磁干扰变压器驱动器配合使用,通过多个二次绕组实现开环的电感-电感-电容控制。或者,使用高度集成的紧凑型偏置电源(如 UCC14240-Q1 直流/直流模块),可为器件进行本地供电,从而实现基于小尺寸印刷电路板的超薄设计。


结语


通过使用合适的栅极驱动器和偏置电源,GaN 器件可帮助您实现系统级优势,如 150V/ns 的开关速度、较低的开关损耗以及较小的高功率系统磁性尺寸,适用于工业和汽车应用。集成 GaN 解决方案可以简化许多器件级挑战,从而使您可以专注于更广泛的系统。


关键字:GaN  功率密度 引用地址:使用集成 GaN 解决方案提高功率密度

上一篇:科索(COSEL)新研发出三款导轨工业电源
下一篇:Power Integrations推出PowerPros实时视频应用工程支持

推荐阅读最新更新时间:2024-11-16 20:47

用PQFN封装技术提高能效和功率密度
 当今大多数电子产品设计都要求高能源效率,包括非消费型电子设备在内,例如工业马达驱动器和电信网络基础设施。对于电源而言,同样需要高功率密度和可靠性,以便降低总拥有成本。   随着开关模式电源转换成为业界标准(与线性电源相比具有更好的功率密度和效率),组件设计人员设法通过芯片级创新和改进封装来不断提升功率MOSFET的导通和开关性能。芯片的不断更新换代使得在导通电阻(RDS(ON))和影响开关性能的因素(如栅极电荷QG)之间的平衡方面逐步取得进展。   国际整流器公司(IR)目前可提供多种不同的芯片,从而使电源设计人员有机会在中低压范围内选择导通和开关性能最优组合的器件。   封装创新主要集中在降低寄生效应方面,例如无芯片封装
[电源管理]
用PQFN封装技术提高能效和<font color='red'>功率密度</font>
制造能耗变革从新一代半导体开始
  美国制造创新网络(目前称为MgfUSA)已经阐明了美国制造业规划的聚焦点在材料与能源。清洁能源智能制造CESMII中的清洁能源与能源互联网自不必说,而在复合材料IACMI和轻量化研究院LIFT中都关注到了汽车减重设计,本身也是为了降低能源消耗的问题。在美国第二个创新研究院“美国电力创新研究院” Power Amercia(PA)其关注点同样在于能源的问题。这是一个关于巨大的能源市场的创新中心。下面就随手机便携小编一起来了解一下相关内容吧。   图1:整体的能源转换效率约在38.4%来源:劳伦斯·利弗莫尔国家实验室的能源评估   图1是美国能源部下属的劳伦斯·利弗莫尔国家实验室对2013年美国的能源使用情况的评估,可以从
[手机便携]
面向未来的电源开关解决方案
在汽车、工业和逆变器应用中,对在更高输出功率水平下提高效率的需求日益增长。而 在电动汽车 (EV) 领域,通过提高电机驱动效率和加快电池充电速度,此类优化对于扩展性能和延长续航里程至关重要 。对于工业而言,提高效率是减少全球能源消耗和增强可持续性的必需条,因此当前重点是直流微电网技术的效率效益。在绿色可再生能源方面,高效率会促进光伏发电、水力发电和风力发电的采用,以便从有限的自然资源中最大限度获取能源。 为了实现这一基本效率目标,电力电子行业正在向提高开关频率和电压过渡,同时仍试图平衡成本与性能并减小总体尺寸(图 1)。然而,实现这种转变需要集成下一代半导体器件,并定期发布新版本的功率 MOSFET 以及宽带隙 SiC 和 G
[电源管理]
面向未来的电源开关解决方案
EPC推出超高功率密度1226 W/in³、1kW的48 V/12 VLLC转换器
宜普电源转换公司(EPC)宣布推出新型EPC9149演示板。该板为一款可提供1 kW功率的48 V输入、12 V输出的LLC转换器,可作为直流变压器,转换比为4:1。EPC9149采用额定电压为100V的EPC2218氮化镓场效应晶体管(eGaNFET)和额定电压为40V的EPC2024。 EPC9149的尺寸是根据DOSA标准的1/8砖型,仅为58.4 mm x 22.9 mm。输出功率是1 kW时,EPC9149比基于硅器件的解决方案要小得多,后者的尺寸通常是1/4砖或大两倍。不带散热器的转换器的总厚度仅为10 mm。为了让工程师能够轻松地复制这个设计,该电路板的所有设计资源,包括原理图、物料清单和Gerber文档,
[电源管理]
EPC推出超高<font color='red'>功率密度</font>1226 W/in³、1kW的48 V/12 VLLC转换器
对抗性神经网络凭啥入选MIT2018十大突破性技术
  日前,《麻省理工科技评论》刊文评出了2018年十大突破性技术,“ 对抗性神经网络 ”( GAN )赫然在列。下面就随嵌入式小编一起来了解一下相关内容吧。   什么是 对抗性神经网络 ?为什么它能入选MIT十大突破性技术?它的发展脉络如何?与我们此前耳熟能详的神经网络有什么区别?能够应用在人工智能的哪些场景?还有哪些关键问题有待攻克?     对抗性神经网络凭啥入选MIT2018十大突破性技术   中国自动化学会混合智能专委会副主任、中国人工智能学会机器学习专委会常委、复旦大学博士生导师张军平教授在接受科技日报记者采访时做了深入浅出的解释。    故事中的 GAN 幻影   张军平告诉记者,虽然 GAN 是科技领域
[嵌入式]
倍思120W氮化镓充电器拆解测评
最近氮化镓市场的发展势头越来越猛,继火爆的65W氮化镓充电器之后,近期多款100W级氮化镓快充陆续发布,针对不同的应用场景,给用户带来更多的选择。在100W氮化镓快充产品布局方面,Baseus倍思率先响应,发布一款120W 2C1A氮化镓充电器。 不仅是上市快人一步,倍思这款充电器还是全球首款120W氮化镓 (GaN)+碳化硅(SiC) 充电器,同时也是首款获得CCC认证的120W大功率氮化镓充电器。这款产品的两个USB-C口性能完全一致,单口最大支持100W PD快充,支持盲插使用。此外5A PPS以及兼容全协议使得这款产品适用性十分强悍。功率智能调整以及120W总输出使其能够为多台设备同时充电。 充电头网已经第一时间对
[电源管理]
倍思120W氮化镓充电器拆解测评
Vishay-30 V p沟道功率MOSFET问市,大幅提高能效和功率密度
日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,首度推出-30 V p沟道功率MOSFET---SiRA99DP,10 V条件下导通电阻降至1.7 mW。Vishay Siliconix TrenchFET®第四代SiRA99DP导通电阻达到业内最低水平,采用热增强型6.15 mm x 5.15 mm PowerPAK® SO-8单体封装,专门用来提高功率密度。 日前发布的MOSFET导通电阻比市场上排名第二的产品低43%,降低压降并减小传导损耗,从而实现更高功率密度。SiRA99DP超低栅极电荷仅为84 nC,栅极电荷与导通电阻乘积,即开关应用中MOSFET的重要优值系数 (
[电源管理]
Vishay-30 V p沟道功率MOSFET问市,大幅提高能效和<font color='red'>功率密度</font>
领先的SiC/GaN功率转换器的驱动
面向新一代功率转换器的ADI隔离式栅极驱动器、电源控制器和处理器 Stefano Gallinaro ADI公司 简介 目前,功率转换器市场快速演进,将来也会快速发展,从简单的高性价比设计模式走向更为广泛、更具持续性的创新模式。新的挑战不断涌现,比如,生产能供小型伺服驱动使用或者能集成到分布式存能单元功率转换器中的更小、更高效的功率转换器。这也意味着,要用更高的工作电压来管理更高的功率,却不能增加重量和尺寸,比如,太阳能串式逆变器和电动汽车牵引电机等应用场合。 基于碳化硅(SiC)、氮化镓(GaN)等宽带隙(WBG)半导体的新型高效率、超快速功率转换器已经开始在各种创新市场和应用领域攻城略地——这类应用包括太
[电源管理]
领先的SiC/<font color='red'>GaN</font>功率转换器的驱动
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved